MOTOROLA

Order this document
by AN1060/D

SEMICONDUCTOR

APPLICATION NOTE

MC68HC11 Bootistrap Mode

Prepared by: Jim Sibigtroth
Mike Rhoades
John Langan

INTRODUCTION

M68HC11 MCUs have a bootstrap mode that allows a
user-defined program to be loaded into the internal random
access memory (RAM) by way of the serial communications
interface (SCI); the M6SHC11 then executes this loaded pro-
gram. The loaded program can do anything a normal user
program can do as well as anything a factory test program can
do because protected control bits are accessible in bootstrap
mode. Although the bootstrap mode is a single-chip mode of
operation, expanded mode resources are accessible because
the mode control bits can be changed while operating in the
bootstrap mode.

This application note explains the operation and application
of the M68HC 11 bootstrap mode. Although the basic concepts
associated with this mode are quite simple, the more subtie
implications of these functions require careful consideration.
Useful applications of this mode are overiooked due to an
incomplete understanding of the bootstrap mode. Also, com-
mon problems associated with the bootstrap mode could be
avoided by a more complete understanding of its operation
and implications.

Topics included in this application note are as follows:
Basic operation of the M68HC11 bootstrap mode
General discussion of bootstrap mode uses
Detailed explanation of on-chip bootstrap logic
Detailed explanation of bootstrap firmware
Bootstrap firmware vs. EEPROM security
Incorporating the bootstrap mode into a system
Driving bootstrap mode from another M68HC11
Driving bootstrap mode from a personal computer
Common bootstrap mode problems
Variations for specific versions of M68HC11

Commented listings for selected M68HC11 bootstrap
ROMs

® 6 O & ¢ o ¢ o o o o

BASIC BOOTSTRAP MODE

This section describes only basic functions of the bootstrap
mode. Other functions of the bootstrap mode are described in
detail in the remainder of this application note.

When an M68HC11 is reset in bootstrap mode, the reset
vector is fetched from a small intemal read-only memory
(ROM) called the bootstrap ROM or (boot ROM). The firmware
program in this boot ROM then controls the bootloading pro-

© MOTOROLA INC., 1990

AN1060

cess. First, the on-chip SCl is initialized. The first character
received ($FF) determines which of two possible baud rates
should be used for the remaining characters in the download
operation. Next, a binary program is received by the SCl sys-
tem and is stored in RAM. Finally, a jump instruction is ex-
ecuted to pass control from the bootioader firmware to the
user’s loaded program. Bootstrap mode is useful both at the
componentlevel and afterthe MCU has been embeddedintoa
finished user system.

At the component level, Motorola uses the bootstrap mode
to control a monitored burn-in program for the on-chip electri-
cally erasabie programmable read-only memory (EEPROM).
Units to be tested are loaded into special circuit boards that
each hold fifty MCUs. These boards are then placed inburn-in
ovens. Driver boards outside the ovens download an
EEPROM exercise and diagnostic program to all fifty MCUs in
parallel. The MCUs under test independently exercise their
internal EEPROM and monitor programming and erase opera-
tions. This technique could be utilized by an end user to load
program information into the EPROM or EEPROM of an
M68HC11 before it is installed into an end product. As in the
bum-in setup, many M68HC11s can be gang programmed in
parallel. This technique can also be used to program the
EPROM of finished products after final assembly.

Motorola also uses bootstrap mode for programming target
devices on the M68HC11EVM Evaluation Modules. Because
bootstrap mode is a privileged mode like special test, the
EEPROM-based configuration register (CONFIG) can be pro-
grammed using bootstrap mode on the EVM.

The greatest benefits from bootstrap mode are realized by
designing the finished system so that bootstrap mode can be
used after final assembly. The finished system need notbe a
single-chip mode application for the bootstrap mode to be
useful because the expansion bus can be enabled after reset-
ting the MCU in bootstrap mode. Allowing this capability re-
quires almost no hardware or design cost and the addition of
this capability is invisible in the end product until it is needed.

The ability to control the embedded processor through
downloaded programs is achieved without the disassembly
and chip-swapping usually associated with such control. This
mode provides an easy way to load non-volatile memories
such as EEPROM with calibration tables or to program the
application firmware into a one-time programmabie (OTP)
MCU after final assembly.

Another powerful use of bootstrap mode in a finished as-
sembily is for final test. Short programs can be downloaded to
check parts of the system, including components and circuitry
externalto the embedded MCU. If any problems appearduring
product development, diagnostic programs can be down-
loaded to find the problems, and corrected routines can be
downloaded and checked before incorporating them into the
main application program.

@ MOTOROLA B

AN1060

Bootstrap mode can also be used to interactively calibrate
critical analog sensors. Since this calibration isdoneinthefinal
assembled system, it can compensate for any errors in dis-
crete interface circuitry and cabling between the sensor and
the analog inputs to the MCU. Note that this calibration routine
is a downloaded program that does not take up space in the
normal application program.

BOOTSTRAP MODE LOGIC

In the MC68HC 11 very little logic is dedicated to the boot-
strap mode: Thus, this mode adds almost no extra cost to the
MCU system. The biggest piece of circuitry for bootstrap mode
is the small boot ROM. This ROM is 192 bytes in the original
MC68HC11A8, but some of the newest members of the
M68HC 11 Family have as much as 448 bytes to accommodate
added features. Normally, this boot ROM is present in the
memory map only when the MCU is reset in the bootstrap
mode to prevent interference with the user’s normal memory
space. The enable for this ROM is controlled by the read boot
ROM (RBOOT) control bit in the highest priority interrupt
(HPRIO) register. The RBOOT bit can be written by software
whenever the MCU is in special test or special bootstrap
modes; when the MCU is in normal modes, RBOOT reverts to
zero and becomes a read-only bit. All other logic in the MCU
would be present whether or not there was a bootstrap mode.

Figure 1 shows the composite memory map of the
MC68HC711E9in its four basic modes of operation, including
bootstrap mode. The active mode is determined by the mode A
(MDA) and special mode (SMOD) control bits in the HPRIO
control register. These control bits are in tumn controlied by the
state of the mode A (MODA) and mode B (MODB) pins during
reset. Table 1 shows the relationship between the state of
these pins during reset, the selected mode, and the state of the
MDA, SMOD, and RBOOT control bits. Refer to the composite
memory map and Table 1 for the following discussion.

The MDA control bit is determined by the state of the MODA
pinasthe MCU leaves reset. MDA selects between single-chip
and expanded operating modes. When MDA is zero, a
single-chip mode is selected, either normal single chip or spe-
cial bootstrap mode. When MDA is one, an expanded mode is
selected, either normal expanded mode or special test mode.

The SMOD control bitis determined by the inverted state of
the MODB pin as the MCU leaves reset. SMOD controls
whether a normal mode or a special mode is selected. When
SMOD is zero, one of the two normal modes is selected, either
normal single-chip or normal expanded mode. When SMOD is
one, one of the two special modes is selected, either special
bootstrap mode or special test mode. When either special
modeis in effect (SMOD = 1), certain privileges are in effect —

Table 1. Mode Selection Summary

Input Pins Control Bits in HPRIO
MODB | MODA | Mode Selected | RBOOT | SMOD | MDA

1 0 | Normai Single Chip 0 0 0

1 1 Normal Expanded Y] 1

0 0 Special Bootstrap 1 1 0

0 1 Special Test 0 1 1

MOTOROLA
2

i.e., the ability to write to the mode control bits and fetching the
reset and interrupt vectors from $BFxx rather than $FFxx.

The alternate vector locations are achieved by simply driv-
ing address bit A14 low during all vector fetches if SMOD = 1.
For special test mode, the alternate vector locations assure
that the reset vector can be fetched from external memory
space so the test system can control MCU operation. In special
bootstrap mode, the small boot ROM s enabled inthe memory
map by RBOOT = 1 so the reset vector will be fetched from this
ROM and the bootioader firmware will control MCU operation.

RBOOT is resetto one in bootstrap mode to enable the small
boot ROM. inthe other three modes, RBOOT is resetto zero to
keep the boot ROM out of the memory map. While in special
test mode, SMOD = 1; which allows the RBOOT control bit to
be written to one by software to enable the boot ROM for
testing purposes.

BOOT ROM FIRMWARE

The main program in the boot ROM is the bootloader, which
is automatically executed as a result of resetting the MCU in
bootstrap mode. Some newer versions of the M68HC11 Fami-
ly have additional utility programs that can be called from a
downloaded program. One utility is available to program
EPROM or OTP versions of the M68HC11. A second utility
allows the contents of memory locations to be uploaded to a
host computer. In the MC68HC711K4 boot ROM, a section of
code is used by Motorola for stress testing the on-chip
EEPROM. These test and utility programs are similar to
self-test ROM programs in other MCUs except that the boot
ROM does not use valuable space in the normal memory map.

Bootstrap firmware is also involved in an optional EEPROM
security function on some versions of the M68HC11. This
EEPROM security feature prevents a software pirate from
seeing what is in the on-chip EEPROM. The secured state is
invoked by programming the no security (NOSEC) EEPROM
bit in the CONFIG register. Once this NOSEC bit is pro-
grammed to zero, the MCU will ignore the mode A pin and
always come out of reset in normal single-chip mode or special
bootstrap mode, depending on the state of the mode B pin.
Normal single-chip mode is the usual way a secured part
would be used. Special bootstrap mode is used to disengage
the security function (only after the contents of EEPROM and
RAM have been erased). Refer to the M68HC11RM/AD,
M68HC11 Reference Manualfor additional informationonthe
security mode and complete listings of the boot ROMs that
support the EEPROM security functions.

AUTOMATIC SELECTION OF BAUD RATE

The bootloader program in the MC68HC711E9 accommo-
dates either of two baud rates. The higher of these baud rates
(7812 baud at a 2-MHz E-clock rate) is used in systems that
operate from a binary frequency crystal such as 223 Hz (8.389
MHz). At this crystal frequency the baud rate is 8192 baud
which was used extensively in automotive applications based
on the MC6801 MCU. The second baud rate available to the
M68HC11 bootloader is 1200 baud at a 2-MHz E-clock rate.
Some of the newest versions of the M68HC11 accommodate
other baud rates using the same differentiation technique ex-
plained here. Refer to the reference numbers in square brack-
ets in Figure 2 during the following explanation.

AN1060

(MAY BE REMAPPED
512.BYTE | TOANY 4K BOUNDARY)
$OIFF — - - -
EXTERNAL EXTERNAL
stom — S N -
03 — | _ _ | _ B4-BYTE | (MAY BE REMAPPED
s REGISTER | TO ANY 4K BOUNDARY)
[BLOCK
EXTERNAL EXTERNAL
(MAY BE DISABLED
$8500 — - - - / 512-BYTE | gy AN EEP
S12EVIE | BY AN EEPROMB)
SBTFF — - - -
T | v
R | ExTERNAL| _m/m/sm
. i
o _ N - o
SOFFF — - _
/ (MAY BE DISABLED
$D000 — - - 12K USER | BY AN EEPROMBIT)
EPROM $FFCO
(orOTR) / NORMAL
MODE
SFFCO — - - - —
o o o

SINGLE EXPANDED SPECIAL SPECIAL $FFFF
CHIP MULTIPLEXED BOOTSTRAP TEST

MODA=0 MODA=1 MODA=0 MODA =1

MODB =1 MODB =1 MODB=0 MODB=0

NOTE: Software can change some aspects of the memory map after reset.

Figure 1. MC68HC711E9 Composite Memory Map

AN1060 MOTOROLA
3

14

/

BT 0 I BT1.. .

PN

f6]

$FF CHARACTER START [BITO Y BITt | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7 ISTOPI Tx DATA LINE IDLES HIGH
@ 7812 BAUD L—"
moamsaees | 1 F b b b b bbby

S 0 1 1 1 1 2 1 1 1 1 1

[1] . $FF

5]
oo s
Rx DATA SAMPLES ? ? ? T 18] T 1 ? T 1
(FOR 7812 BAUD) Smo 0 0 0 0 0 ?[9] 1
AN

/

$CO
or $€0 [10]

Figure 2. Automatic Detection of Baud Rate

Figure 2 shows how the bootioader program differentiates
between the default baud rate (7812 baud at a 2-MHz E-clock
rate) and the alternate baud rate (1200 baud at a 2-MHz
E-clock rate). The host computer sends an initial $FF charac-
ter, which is used by the bootloader to determine the baud rate
that will be used for the downloading operation. The top half of
Figure 2 shows normal reception of $FF. Receive data sam-
ples at [1] detect the falling edge of the start bit and then verify
the start bit by taking a sample at the center of the start bit time.
Samples are then taken at the middie of each bit time [2] to
reconstruct the value of the received character (all ones in this
case). A sample is then taken at the middie of the stop bittime
as a framing check (a one is expected) [3]. Unless another
character immediately follows this $FF character, the receive
data fine will idle in the high state as shown at [4].

The bottom half of Figure 2 shows how the receiver will
incorrectly receive the $FF character that is sent from the host
at 1200 baud. Because the receiver is set to 7812 baud, the
receive data samples are taken at the same times as in the
upper half of Figure 2. The start bit at 1200 baud [5] is 6.5 times
as long as the start bit at 7812 baud [6].

Samples taken at [7] detect the falling edge of the start bit
and verify itis a logic zero. Samples taken at the middle of what
the receiver thinks are the first five bit times [8] detect logic
zeros. The sample taken at the middle of what the receiver
thinks is bit 5 [9] may detect either a zero or a one because the
receive data has a rising transition at about this time. The
samples for bits 6 and 7 detect ones, causing the receiver to
think the received character was $C0 or $E0 [10] at 7812 baud
instead of the $FF which was sent at 1200 baud. The stop bit
sample detects a one as expected [11], but this detection is
actually in the middle of bit 0 of the 1200 baud $FF character.
The SCl receiver is not confused by the rest of the 1200 baud
$FF character because the receive dataline is high [12] just as
itwould be for the idle condition. If acharacter otherthan $FF is
sent as the first character, an SCI receive error could result.

MAIN BOOTLOADER PROGRAM

Figure 3is a flowchart of the main bootloader programinthe
MC68HC711ES. This bootioader demonstrates the most im-
portantfeatures of the bootloaders used onall M68HC 11 Fam-
ily members. For complete listings of other M6BHC 11 versions
refer to Listings 3-8 at the end of this application note, and

MOTOROLA
4

appendix B of the M6BHC11RM/AD, M68HC11 Reference
Manual.

The reset vectorin the boot ROM points to the start [1] of this
program. The initialization block [2] establishes starting condi-
tions and sets up the SC! and port D. The stack pointer is set
because there are push and pull instructions in the bootloader
program. The X index register is pointed at the start of the
register block ($1000) so indexed addressing can be used.
Indexed addressing takes one less byte of ROM space than
extended instructions, and bit manipulation instructions are
not available in extended addressing forms. The port D
wire-OR mode (DWOM) bit in the serial peripheral interface
control register (SPCR) is set to configure port D for wired-OR
operation to minimize potential conflicts with external systems
thatuse the PD1/TxD pinas aninput. The baud rate for the SCI
is initially set to 7812 baud at a 2-MHz E-clock rate but can
automatically switch to 1200 baud based on the first character
received. The SClI receiver and transmitter are enabied. The
receiver is required by the bootloading process, and the trans-
mitter is used to transmit data back to the host computer for
optional verification. The last item in the initialization is to set
an intercharacter delay constant used to terminate the down-
load when the host computer stops sending data to the
MC68HC711ES. This delay constant is stored in the timer
output compare 1 (TOC1) register, but the on-chip timer is not
used in the bootloader program. This example illustrates the
extreme measures used in the bootloader firmware to mini-
mize memory usage. However such measures are not usually
considered good programming technique because they are
misleading to someone trying to understand the program.

After initialization, a break character is transmitted [3] by the
SCI. By connecting the TxD pin to the RxD pin (with a pullup
because of port D wired-OR mode), this break will be receive-
das a $00 character and cause an immediate jump [4] to the
start of the on-chip EEPROM ($B600 in the MC68HC711ES).
This feature is useful to pass control to a program in EEPROM
essentially from reset. Refer to COMMON BOOTSTRAP
MODE PROBLEMS before using this feature.

If the first character is received as $FF, the baud rate is
assumed to be the default rate (7812 baud at a 2-MHz E-clock
rate). if $FF was sent at 1200 baud by the host, the SCI will
receive the character as $E0 or $C0 because of the baud rate
mismatch, and the bootloader will switch to 1200 baud [5] for
the rest of the download operation. When the baud rate is
switched to 1200 baud, the delay constant used to monitor the

AN1060

intercharacter delay must also be changed to reflect the new
character time.

At [6], the Y index register is initialized to $0000 to point to
the start of on-chip RAM. The index register Y is used to keep
track of where the next received data byte will be stored in
RAM. The main loop for loading begins at [7].

The number of data bytes in the downloaded program can
be any number between zero and 512 bytes (the size of
on-chip RAM). This procedure is called ‘variable-length down-
load’ and is accomplished by ending the download sequence
when an idle time of at least four character times occurs after
the last character to be downloaded. In M68HC11 Family
members which have 256 bytes of RAM, the downioad iength
is fixed at exactly 256 bytes plus the leading $FF character.

The intercharacter delay counter is started [8] by loading the
delay constant from TOC1 into the X index register. The
19-E-cycie wait loop is executed repeatedly until either a char-

) FROM RESET

IN BOOT MODE

INITIALIZATION: 2
SP = TOP OF RAM ($01FF)

X = START OF REGS ($1000)

SPCR = $20 (SET DWOM BIT)

BAUD = $A2 (+4; +4) (7812 BAUD @ 2MHz)

SCCR2 = $C0 (Tx & Rx ON

TOCt = DELAY CONSTANT (539 = 4 SCI CHARACTER TIMES)

] SEND BREAK | <}
D"O RECEIVED FIRST CHAR YET 7

NO
NOTZERO NOTE THAT A BREAK
FIRST CHAR < SFF ? CHARACTER IS ALSO
No [| RECEVEDASS$00

acter is received [9] or the allowed intercharacter delay time YES

expires [10]. For 7812 baud, the delay constant is 10,241 E

cycles (539 X 19 E cycles per loop). Four character times at
7812 baud is 10,240 E cycles (baud prescale of 4 X baud
divider of 4 X 16 internal SCl clocks/bit time X 10 bittimes/cha-
racter X 4 character times). The delay from reset to the initial
$FF character is not critical since the delay counter is not
started until after the first character ($FF) is received.

To terminate the bootloading sequence and jumpto the start
of RAM without downloading any data to the on-chip RAM,
simply send $FF and nothing else. This feature is similar to the
jump to EEPROM at [4] except the $FF causes a jump to the
start of RAM. This procedure requires that the RAM has been
loaded with a valid program since it would make no sense to
jump to a location in uninitialized memory.

After receiving a character, the downloaded byte is storedin
RAM [11]. The data is transmitted back to the host [12] as an
indication that the download is progressing normally. At [13],
the RAM pointerisincremented to the next RAM address. if the
RAM pointer has not passed the end of RAM, the main down-
load loop (from [7] to [14]) is repeated.

When all data has been downloaded, the bootloader goesto
[16] because of an intercharacter delay timeout [10] or be-
cause the entire 512-byte RAM has been filled {15]. At[16], the
X and Y index registers are set up for calling the PROGRAM
utility routine, which saves the user from havingto do thisina
downloaded program. The PROGRAM utility is fully explained
in EPROM PROGRAMMING UTILITY. The final step of the
bootloader program is to jump to the start of RAM [17], which
starts the user’s downioaded program.

AN1060

SWITCH TO SLOWER SCI RATE...
BAUD = $33 (+13; +8) (1200 BAUD @ 2 MHz)

CHANGE DELAY CONSTANT...
TOC = 3504 (4 SCI CHARACTER TIMES)
BAUDOK
[POINT TO START OF RAM (¥ = $0000)] [6]
m_
| INITIALIZE TIMEOUT COUNT | 8]
WTLOOP PR
Y YES
RECEIVE DATA READY)——
y NO LOOP =
| DECREMENT TIMEOUT COUNT | 19
CYCLES
NO/
{_TIMEDOUTYET? >
o] | YES /

—

[store RECEIVED DATA TO RAM (V)] 111]

[TRANSMIT (ECHO) FOR VERIFY | [12]

| POINT AT NEXT RAM LOCATION | [13]

[14]
PAST END OF FAM 7 >-C.

YES
sr ™
SET UP FOR PROGRAM UTILITY:

X = PROGRAMMING TIME CONSTANT | [16}
Y = START OF EPROM

JUMP TO START) .
OF RaM (go000)) [17)

Figure 3. MC68HC711E9 Bootloader Flowchart

MOTOROLA

UPLOAD UTILITY

The UPLOAD utility subroutine transfers data from the MCU
1o a host computer system over the SCI serial data link. Note
that M68HC 11 versions that support EEPROM security do not
include this utility. Verification of EPROM contents is one ex-
ample of how the UPLOAD utility could be used. Before calling
this program, the Y index register is loaded (by user firmware)
with the address of the first data byte to be uploaded. If a baud
rate other than the current SCI baud rate is to be used for the
upload process, the user’s firmware must also write to the
BAUD register. The UPLOAD program sends successive
bytes of data out the SCI transmitter until a reset is issued (the
upload loop is infinite). For a complete commented listing of
the UPLOAD tility, refer to Listings at the back of this applica-
tion note.

EPROM PROGRAMMING UTILITY

The EPROM programming utility is one way of program-
ming data into the internal EPROM of the MC68HC711E9
MCU. An external 12-V programming power supply is required
to program on-chip EPROM. The simplest way to use this
utility program is to bootioad a three-byte program consisting
of asingle jump instruction to the start of the PROGRAM utility
program ($BF00). The bootioader program sets the X and Y
index registers to default values before jumping to the down-
loaded program (see [16] at the bottom of Figure 3). When the
host computer sees the $FF character, datato be programmed
into the EPROM is sent, starting with the character for location
$D000. After the last byte to be programmed is sent to the
MC68HC711E9 and the corresponding verification data is re-
tumed to the host, the programming operation is terminated by
resetting the MCU.

The number of bytes to be programmed, the first address to
be programmed, and the programming time can be controlled
by the user if values other than the default values are desired.

To understand the detailed operation of the EPROM pro-
gramming utility, refer to Figure 4 during the following discus-
sion. Figure 4 is composed of three interrelated parts. The
upper-left portion shows the flowchart of the PROGRAM utility
running in the boot ROM of the MCU. The upper-right portion
shows the flowchart for the user-supplied driver program run-
ning in the host computer. The lower portion of Figure 4 is a
timing sequence showing the relationship of operations be-
tween the MCU and the host computer. Reference numbers in
the flowcharts in the upper half of Figure 4 have matching
numbers in the lower half to help the reader relate the three
parts of the figure.

The shaded area [1] refers to the software and hardware
latency in the MCU leading to the transmission of a character
(in this case, the $FF). The shaded area [2] refers to a similar
latency in the host computer (in this case, leading to the trans-
mission of the first data character to the MCU).

The overall operation begins when the MCU sends the first
character ($FF) to the host computer, indicating that it is ready
for the first data character. The host computer sends the first
databyte [3] and enters its main loop. The second data charac-
ter is sent [4], and the host then waits [5] for the first verify byte
to come back from the MCU.

MOTOROLA
6

After the MCU sends $FF [8], it enters the WAIT1 loop [9]
and waits for the first data character from the host. When this
character is received [10] the MCU programs it into the ad-
dress pointed to by the Y index register. When the program-
ming time delay is over, the MCU reads the programmed data,
transmitsitto the hostfor verification[11}, and retums to the top
of the WAIT1 loop to wait for the next data character [12].
Because the host previously sent the second data character, it
is already waiting in the SCI receiver of the MCU. Steps [13],
[14], and [15] comrespond to the second pass through the
WAIT1 loop.

Backin the host, the first verify characteris received, and the
third data character is sent [6]. The host then waits for the
second verify character [7] to come back from the MCU. The
sequence continues as long as the host continues to send data
to the MCU. Since the WAIT1 loop in the PROGRAM utility is
an indefinite loop, reset is used to end the process in the MCU
after the host has finished sending data to be programmed.

ALLOWING FOR BOOTSTRAP MODE

Since bootstrap mode requires very few connections to the
MCU, itis easy to design systems that accommodate the boot-
strap mode. Bootstrap mode is useful for diagnosing or repair-
ing systems that have failed due to changes in the CONFIG
register or failures of the expansion address/data buses, (ren-
dering programs in external memory useless). Bootstrap
mode can also be used to load information into the EPROM or
EEPROM of an M68HC11 atter final assembly of a module.
Bootstrap mode is also useful for performing system checks
and calibration routines. The following paragraphs explain
system requirements for use of bootstrap mode in a product.

MODE SELECT PINS: it must be possible to force the
MODA and MODB pins to logic zero, which implies that these
two pins should be pulled up to Vpp through resistors rather
than being tied directly to Vpp. If mode pins are connected
directly to Vpp itis not possible to force a mode other than the
one the MCU is hard wired for. It is also good practice to use
pulldown resistors to Vgg rather than connecting mode pins
directly to Vgg because it is sometimes a useful debug aid to
attempt reset in modes other than the one the system was
primarily designed for. Physically, this requirement sometimes
calls for the addition of atest point or awire connected to one or
both mode pins. Mode selection only uses the mode pins while
RESET is active.

RESET: ltmustbe possible to initiate a reset while the mode
select pins are held low. in systems where there is no provision
for manual reset, it is usually possible to generate a reset by
tuming power off and back on.

RxD PIN: it must be possible to drive the PDO/RxD pin with
serial data from a host computer (or another MCU). in many
systems, this pinis aiready used for SCl communications; thus
no changes are required. .

In systems where the PDO/RxD pin is normally used as a
general-purpose output, a serial signal from the host can be
connected to the pin without resulting in output driver conflicts.
it may be important to consider what the existing logic will do
with the SCl serial data instead of the signals that would have
been produced by the PDO pin. In systems where the PDO pin
is normally used as a general-purpose input, the driver circuit

PROGRAM Utility in MCU Driver Program in HOST

HOST NORMALLY WAITS FOR $FF
FROM MCU BEFORE SENDING DATA
FOR EPROM PROGRAMMING

INITIALIZE...
X = PROGRAM TIME

Y = FIRST ADDRESS
$BF00 - PROGRAM START
¥ [seno sFr] FDCATES READY [SEND FiRsT DATABYTE | 1
— DATA_LOOP
l ' NO
NO —< MORE DATATOSEND ? >
ANY DATA RECEVED ? » =
YES Y
[SENDNEXTDATA | 4] [6]
[PROGRAMBYTE 10} [13]
NO SRyl
READ PROGRAMMED DATA -
AND SEND TOVERIFY _| [11] [14] —< VERIFY DATA ::;"E"’ED 2D
POINT TO NEXT LOCATION VERIFY DATA CORRECT 7 >—a] INDICATE ERROR]
TO BE PROGRAMMED YES
ha na y —YES(MORE TOVERIFY? >
NO y
PROGRAM CONTINUES v
AS LONG AS DATA
srecaveD =)
VERIFY DATA TO HOST = L ETR - —
(SAME AS MCU Tx DATA) faf] SFF | 2 terd vt bl V2| Pl v3 il va |) HosT

TN e
| D4 | i 05 |

MCU RECEIVE DATA (FROMHOST)

[l l[w] Z l[13] l Z l

MCB8HC711E9
EPROM PROGRAMMING 4 | P lﬂl\L P2 I[1 4 I 3 N pPs | EXECUTING
8 l) 12 l (5] V l “PROGRAM’ LOOP
MCU TRANSMIT DATA (VERIFY) Vi V2 ol va_ ol V4 |

Figure 4. Host and MCU Activity during EPROM PROGRAM Utility

AN1060 MOTOROLA
7

thatdrives the PDO pin must be designed so thatthe serial data
can override this driver, or the driver must be disconnected
during the bootstrap download. A simple series resistor be-
tween the driver and the PDO pin solves this problem as shown
in Figure 5. The serial data from the host computer can then be
connected to the PDO/RxD pin, and the series resistor will
prevent direct conflict between the host driver and the normal
PDO driver.

CONNECTED ONLY DURING
FROM BOOTLOADING
HOST——— = Pr-=c===-- :
SYSTEM o + Y mcesHett
LEVEL '
SHIFTER '
EXISTING : .
comn0L—>o—w\-—o— RxD/PDO
SIGNAL SERIES {BEING USED
EXISTING RESISTOR JL ASINPUT)
DRIVER

Figure 5. Preventing Driver Conflict

TxD PIN: The bootloader program uses the PD1/TxD pin to
send verification data back to the host computer. To minimize
the possibility of conflicts with circuitry connected to this pin,
port D is configured for wire-OR mode by the bootloader pro-
gramduring initialization. Since the wire-OR configuration pre-
vents the pin from driving active high levels, a pullup resistor to
VpD is needed if the TxD signal is used.

In systems where the PD1/TxD pin is normally used as a
general-purpose output, there are no output driver conflicts. it
may be important to consider whatthe existing logic will do with
the SClI serial data instead of the signals that would have been
produced by the PD1 pin.

In systems where the PD1 pinis normally used as ageneral-
purpose input, the driver circuit that drives the PD1 pin mustbe
designed so that the PD1/TxD pin driver in the MCU can over-
ride this driver. A simple series resistor between the driverand
the PD1 pin can solve this problem. The TxD pin can then be
configured as an output, and the series resistor will prevent
direct conflict between the internal TxD driver and the external
driver connected to PD1 through the series resistor.

OTHER: The bootloader firmware sets the DWOM control
bit, which configures all port D pins for wire-OR operation.
During the bootloading process, all port D pins except the
PD1/TxD pin are configured as high-impedance inputs. Any
port D pin that is normally used as an output should have a
pullup resistor so it does not float during the bootloading pro-
cess.

DRIVING BOOT MODE FROM
ANOTHER M68HC11

A second M68HC11 system can easily act as the host to
drive bootstrap loading of an M68HC11 MCU. This method is
used to examine and program nonvolatile memories in target
M68HC11s in Motorola EVMSs. The following hardware and
software example will demonstrate this and other bootstrap
mode features.

The schematic in Figure 6 shows the circuitry for a simple
EPROM duplicator for the MC68HC711ES. The circuitry is
built in the wire-wrap area of an M68HC11EVBU Evaluation

MOTOROLA
8

Board to simplify construction. The schematic shows only
the important portions of the EVBU circuitry to avoid con-
fusion. To see the complete EVBU schematic, refer to the
M68HC11EVBU/D, M68HC11EVBU Universal Evaluation
Board User’s Manual.

The default configuration of the EVBU must be changed to
make the appropriate connections to the circuitry in the
wire-wrap area and to configure the master MCU for bootstrap
mode. A fabricated jumper must be installed at J6 to connect
the XTAL output of the master MCU to the wire-wrap connector
P5, which has been wired to the EXTAL input of the target
MCU. Cuttraces that shortacross J8 and J mustbe cutonthe
solder side of the printed circuit board to disconnect the normal
SCI connections to the RS232 level translator (U4) of the
EVBU. The J8 and J9 connections can easily be restored ata
later time by installing fabricated jumpers on the component
side of the board. A fabricated jumper mustbe installed across
J3 to configure the master MCU for bootstrap mode.

One MCB8HC711ES is first programmed by other means
with a desired 12K-byte program in its EPROM and a small
duplicator program in its EEPROM. Alternately, the ROM pro-
gram in an MC68HC11E9 can be copied into the EPROM of a
target MC68HC711E9 by programming only the duplicator
program into the EEPROM of the master MC68HC11ES. The
master MCU is installed in the EVBU at socket U3. A blank
MC68HC711ES to be programmed is placed in the socket in
the wire-wrap area of the EVBU (US6).

With the Vpp power switch off, power is applied to the EVBU
system. As power is applied to the EVBU, the master MCU
(U3) comes outof reset in bootstrap mode. TargetMCU (U6) is
held in reset by the PB7 output of master MCU (U3). The PB7
output of U3 is forced to zero when U3 is reset. The master
MCU will iater release the reset signal to the target MCU under
software control. The RxD and TxD pins of the target MCU
(U6) are high-impedance inputs while U6 is in reset so they will
not affect the TxD and RxD signals of the master MCU (U3)
while U3 is coming out of reset. Since the target MCU is being
held in reset with MODA and MODB at zero, itis configured for
the EPROM emulation mode, and PB7 is the output enable
signal for the EPROM data I/O pins. Pullup resistor R7 causes
the port D pins including RxD and TxD, to remain in the
high-impedance state so they do notinterfere with the RxD and
TxD pins of the master MCU as it comes out of reset.

As U3 leaves reset, its mode pins select bootstrap mode so
the bootloader firmware begins executing. A break is sent out
the TxD pin of U3. Pullup resistor R10 and resistor R9 cause
the break character to be seen at the RxD pin of U3. The
bootioader performs a jump to the start of EEPROM in the
master MCU (U3) and starts executing the dupliicator program.
This sequence demonstrates how to use bootstrap mode to
pass control to the start of EEPROM after reset.

The complete listing for the duplicator program in the
EEPROM of the master MCU is provided in Listing 1.

The duplicator program in EEPROM clears the DWOM con-
trol bit to change port D (thus, TxD) of U3 to normal driven
outputs. This configuration will prevent interference due to RS
when TxD from the target MCU (U6) becomes active. Series
resistor R9 demonstrates how TxD of U3 can drive RxD of U3
and later TxD of U6 can drive RxD of U3 without a destructive
conflict between the TxD output buffers.

AN1060

PROGRAMMING POWER

COM +1225V
M8SHC11EVBU l l
”"lllll”Illll'l”’,""'l'l’ll"l’l""’llll""'“"- y 5y .
PREWIRED AREA * WIRE-WRAP AREA
¢
. ON
4
P4+ P5 AN I
/ 2 v Vpp
l ’ l + 100
: R14 ci % O
o7 |50 50_%, 50 15K l 20 uF
) .
IIASTE ’ - -
mcuR ' ?;:
’
U3 ! MC68HCTHES
’ —
’ - 1 —
’ RS 8 XlRQ/VPpE
¢
PB7 |2 NN A 7_1| REser
. 33K
‘ Vpp
o1 141 a4 Rz, " ‘l" D5 % |,
"r YK RED ci7 oD
42 42 - 42 R13 D6 0.1 pF 1
PBO >> M :
, Wik P cre Yss
36 ! - - TARGET
. Us
XTAL ‘_Ea E—-as > T exma
’
woos |2 @ ‘ VoD Voo
’
P) l 35 PR7
— 4 \ s
€8 - ’ R14 R7 10K
’ 15K
0 L2 2t 2 2 | e
: Ri5
’ 10K
a0 L2 2 5 2 2 |0
’
O L : 3| mopa
[. ’
o) x o) x ’ 2 | moos
' fl ’
] —
o o 1 ’
' [¢ -
- - d --d P
’
’
TO/FROM !
RS232 LEVEL .
TRANSLATOR .
U4 ¢

LAV B 20 2 2 2 B 2 P I X v 2 2 B A AN 2 B B RV B N N N L L S NV S N N N S v 3 B WV S i WV R N v v D I A A b ar i i 4
NOTE: Only the most important portions of EVBU circuitry are shown.
Figure 6. MCU to MCU EPROM Duplicator Schematic

AN1060 MOTOROLA
9

As the target MCU (U6) leaves reset, its mode pins select
bootstrap mode so the bootioader firnware begins executing.
Abreakis sentoutthe TxD pin of U6. At this time, the TxD pin of
U3 is at adriven high so R9 acts as a pullup resistor for TxD of
the target MCU (U6). The break character sent from U6 is
received by U3 so the duplicator program that is running in the
EEPROM of the master MCU knows that the target MCU is
ready to accept a bootloaded program.

The master MCU sends a leading $FF character to set the
baud rate in the target MCU. Next, the master MCU passes a
three-instruction program to the targetMCU and pauses so the
bootstrap program in the target MCU will stop the loading
process and jump to the start of the downloaded program. This
sequence demonstrates the variable-length download feature
of the MC68HC711ES bootioader.

The short program downloaded to the target MCU clears the
DWOM bit to change its TxD pin to a normal driven CMOS
output and jumps to the EPROM programming utility in the
bootstrap ROM of the target MCU.

Note that the small downloaded program did not have to set
up the SCI or initialize any parameters for the EPROM pro-
gramming process. The bootstrap software thatran priorto the
loaded program left the SCI turned on and configured in a way
that was compatible with the SCI in the master MCU (the
duplicator program in the master MCU also did not have to set
up the SCI for the same reason). The programming time and
starting address for EPROM programming in the target MCU
were also set to defauit values by the bootloader software
before jumping to the start of the downloaded program.

Before the EPROM in the target MCU can be programmed,
the Vpp power supply mustbe available atthe XIRQ/VppEg pin
of the target MCU. The duplicator program running in the mas-
ter MCU monitors this voltage (for presence or absence — not
level) at PE7 through resistor divider R14 - R15. The PE7 input
was chosen because the internal circuitry for port E pins can
tolerate voltages slightly higher than Vpp; therefore resistors
R14 and R15 are less critical. No data to be programmed is
passed to the target MCU until the master MCU senses that
Vpp has been stable for about 200 ms.

When Vpp is ready, the master MCU tums on the red LED
and begins passing data to the target MCU. EPROM PRO-
GRAMMING UTILITY explains the activity as datais sent from
the master MCU to the target MCU and programmed into the
EPROM of the target. The master MCU in the EVBU corre-
sponds to the HOST in the programming utility description,
and the “PROGRAM utility in MCU” is running in the bootstrap
ROM of the target MCU.

Eachbyte of data sentto the target is programmed and then
the programmed location is read and sent back to the master
for verification. If any byte fails, the red and green LEDs are
turned off, and the programming operation is aborted. f the
entire 12K bytes are programmed and verified successfully,
the red LED is turned off, and the green LED is turned on to
indicate success. The programming of all 12K bytes takes
about 30 sec.

After a programming operation, the Vpp switch (S2) shoulid
be turned off before the EVBU power is tumned off.

MOTOROLA
10

AN1060

Listing 1. MCU to MCU Duplicator Program

103D
0028
0004

0080
0002
0001
0002
002E

0080
0020
002F
BFOO
D000

HHP PR
VB WNHOWOJIALBWNE

NN
H O W30

[NEN)
wN

B600

B600
B603
B605
B607
B609
B60B
B60F
B611l
B613
B616
B618
B61B

B61D
B620
B621
B623
B625

B627
B62B
B62D

B630
B634
B637
B639
B63B
B63E
B640

B642
B646
B648
B64B
B64D
B64F
B653
B655
B658
B652
B65D
B65F
B6SF
B661

7F103D
8604
9728
8680
9704
132E20FC
86FF
972F
CEB675
8D53
8CB67D
26F9

132E20FC
962F
CED00O

18CES23D
150402
960A
2AF5
140402
1809
26F5

18CED00O
8D23
8C0000
2702
8D1C
132E20FC
962F
18A100
2705
150403
2007

1808
26E5

R KKK AR KA AR TR AR A A AR AKX A XXX KRR KR AK

* 68HC711ES Duplicator Program for AN1060

A KA AR R R AR AR KR AT AR A A AN A AR AT RSk h ko hx

*dk kXK

* Equates - All reg addrs except INIT are 2-digit

RAM, Reg mapping
DWOM in bit-5

Red LED = bit-1l, Grn = bit-0

Vpp Sense in bit-7, 1=ON

SCI status register

SCI data register
EPROM prog utility in boot ROM
Starting address of EPROM

Start of EEPROM

Moves Registers to $0000-3F
Pattern for DWOM off, no SPI
Turns off DWOM in EVBU MCU

Release reset to target MCU
Loop till char received
Leading char for bootload ...
to target MCU

Point at program for target
Bootload to target

Past end ?

* for direct addressing
K d kXK
INIT EQU $103D
SPCR EQU $28
PORTB EQU $04
* Reset of prog socket = bit-7
RESET EQU %$10000000
RED EQU %$00000010
GREEN EQU %$00000001
PORTE EQU $0a
SCSR EQU $2E
* TDRE, TC, RDRF, IDLE; OR, NF, FE,
TDRE EQU %$10000000
RDRF EQU $00100000
SCDR EQU $2F
PROGRAM EQU $BFO0
EPSTRT EQU $D000
ORG $B60C0O
AT AR AT AT TR TR A AKX AR AR AR AR TR XK
*
BEGIN CLR INIT
LDAA #$04
STAA SPCR
LD2AA #RESET
STAA PORTB
WT4BRK BRCLR SCSR RDRF WT4BRK
LDAA #SFF
STAA SCDR
LDX #BLPROG
BLLOOP BSR SEND1
CpX #ENDBPR
BNE BLLOCP

x KX KK

Continue till all sent

* Delay for about 4 char times to allow boot related
* SCI communications to finish before clearing

* Rx related flags

LDX
DEX
BNE
LDAA
LDAA

LYLP

% % % %k

#1703

DLYLP
SCSR
SCDR

* Now wait for character from target
* data to be programmed into EPROM

WT4EFE BRCLR SCSR RDRF WTA4FF
LDAA SCDR
LDX #EPSTRT
* Handle turn-on of Vpp
WT4VPP LDY #21053
BCLR PORTB RED
DLYLP2 LDAA PORTE
BPL WT4VPP
BSET PORTB RED
DEY
BNE DLYLP2
* Vpp has been stable for 200ms
LDY #EPSTRT
BSR SEND1
DATALP CpPX #0
BEQ VERF
BSR SEND1
VERF BRCLR SCSR RDRF VERF
LDAA SCDR
CMPA c,Y
BEQ VERFOK
BCLR PORTB (RED+GREEN)
BRA DUNPRG
VERFOK INY
BNE DATALP

of 6 cyc loops

[3]

[3] Total loop time = 6 cyc
Read status (RDRF will be set)

Sheet 1 of 2

Read SCI data reg to clear RDRF

to indicate it’s ready for

Wait for RDRF
Clear RDRF, don’t need data
Point at start of EPROM

Delay counter (about 200ms)
Turn off RED LED

[3] Wait for Vpp to be ON

[3] Vpp sense is on port E MSB
[6] Turn on RED LEDdd

[4]

[3] Total loop time = 19 cyc

X=Tx pointer, Y=verify pointer
Send first data to target

X points at $0000 after last
Skip send if no more

Send another data char

Wait for Rx ready

Get char and clr RDRF

Does char verify ?

Skip error if OK

Turn off LEDs

Done (programming failed)

Advance verify pointer
Continue till all done

AN1060

MOTOROLA
1

Listing 1. MCU to MCU Duplicator Program Sheet 2 of 2

80 B663
81 B663 140401 BSET PORTB GREEN Grn LED ON
82 B666
83 B666 150482 DUNPRG BCLR PORTB (RESET+RED) Red OFF, apply reset
84 B669 20FE BRA * Done so just hang
85 B66B
86 t2 22222 2SR LRSS 222222222t E
87 * Subroutine to get & send an SCI char. Also
88 * advances pointer (X).
89 t2 222 22 222222 22222t R
90 B66B 2600 SEND1 LDAA 0,X Get a character
91 B66D 132E80FC TRDYLP BRCLR SCSR TDRE TRDYLP Wait for TDRE
92 B671 972F STARA SCDR Send character
93 B673 08 INX . Advance pointer
94 B674 39 RTS ** Return **
95
96 . KKK KA KT RA AT AR TR AT XXX RARKER XK AKX
97 * Program to be bootloaded to target ’711ES9
98 AT AT AT ALK AR AR A AR AT XA AR RS
99 B675 8604 BLPROG LDAA #3504 Pattern for DWOM off, no SPI
100 B677 B71028 STAA $1028 Turns off DWOM in target MCU
101 * NOTE: Can‘t use direct addressing in target MCU because
102 * regs are located at $1000.
103 B6&7A 7EBF00 JMP PROGRAM Jumps to EPROM prog routine
104 B67D ENDBPR EQU *
Symbol Table:
Symbol Name Value Def.# Line Number Cross Reference
BEGIN B600 *00029
BLLOOP B616 *00038 00040
BLPROG B675 =*00099 0037
DATALP B648 *00068 00079
DLYLP B620 *00046 00047
DLYLP2 B637 *00059 00063
DUNPRG B666 *00083 00076
ENDBPR B67D *00104 00039
EPSTRT D000 *00023 00055 00066
GREEN 0001 *00015 00075 00081
INIT 103D *0000% 00029
PORTB 0004 *00011 00033 00058 00061 00075 00081 00083
PORTE 0002 *00016 00059
PROGRAM BFOO *00022 00103
RDRF 0020 *00020 00034 00053 00071
RED 0002 *00014 00058 00061 00075 00083
RESET 0080 *00013 00032 00083
SCDR 002F =*00021 00036 00049 00054 00072 00092
SCSR 002E =*00017 00034 00048 00053 00071 00091
SEND1 B66B *00090 00038 00067 00070
SPCR 0028 *00010 00031
TDRE 0080 *00018 00091
TRDYLP B66D *00091 00091
VERF B64F *00071 00069 00071
VERFOK B65SF *00078 00074
WT4BRK B60B *00034 00034
WT4FF B627 *00053 00053
WT4VPP B630 *00057 00060

Errors: None
Labels: 28
Last Program Address: $B67C
Last Storage Address: $0000
Program Bytes: $007D 125
Storage Bytes: $0000 O

MOTOROLA AN1060
12

\" CUT TRACE
Do AS SHOWN
RN1D ob
47K - n \
_ToMmcu
XIRQ/VppE
PIN
@———» P4-18
J7
FROM OCS PIN
OF MCU g or—¢ > P518
REMOVE J7
JUMPER
J14
T0

MCs8HCE8T1™ O O

BE SURE NO

JUMPER IS

ONJ14
Figure 7. Isolating EVBU XIRQ Pin
DRIVING BOOT MODE FROM MC68HC711E9. Lines 25-45 initialize and define the vari-
A PERSONAL COMPUTER ables and array used in the program. Changes to this section

In this example, a personal computer is used as the
host to drive the bootloader of an MC68HC711E9. An
M68HC11EVBU is used for the target MC68HC711E9. Alarge
program is transferred from the personal computer into the
EPROM of the target MC68HC711E9.

HARDWARE: Figure 7 shows a small modification to the
EVBU to accommodate the 12-V (nominal) EPROM program-
ming voltage. The XIRQ pin is connected to a puliup resistor,
two jumpers, and the 60-pin connectors, P4 and P5. The object
ofthe modificationis to isolate the XIRQ pin and then connect it
to the programming power supply. Carefully cut the trace on
the solder side of the EVBU as indicated in Figure 7. This
disconnects the pullup resistor RN1D from XIRQ but leaves
P4-18, P5-18, and jumpers J7 and J14 connected so the
EVBU can still be used for other purposes after programming
is done. Remove any fabricated jumpers from J7 and J14. The
EVBU normally has a jumper at J7 to support the trace function

Figure 8 shows a small circuit that is added to the wire-wrap
area of the EVBU. The three-terminal jumper allows the XIRQ
line to be connected to either the programming power supply
or to a substitute pullup resistor for XIRQ. The 100-ohm
resistor is a current limiter to protectthe 12-V input of the MCU.
The resistor and LED connected to P5 pin 9 (port C bit 0) is an
optional indicator that lights when programming is complete.

SOFTWARE: BASIC was chosen as the programming
language due to its readability and availability in parallel
versions on both the IBM™1 PC and the Macintosh™2. The
program demonstrates several programming techniques for
use with an M68HC11 and is not necessarily intended to be a
finished, commercial program. For example, there is very little
error checking, and the user interface is very elementary. A
complete listing of the BASIC program is included in Listing 2
with moderate comments. The following paragraphs include a
more detailed discussion of the program as it pertains
to communicating with and programming the target

AN1060

would allow for other programs to be downloaded.

1. IBM is a trademark of international Business Machines.
2. Macintosh is a trademark of Apple Computers, Inc.

Voo
47K
O | NORMAL EVBU
OPERATION o
Ot 222
100 PROGRAM (XROVPPE)
+1225V — O | EPROM
* JUMPER
PROGRAMMING 20pF
POWER
COMMON —<
VA
PCO — >———A

P59 K LED l

Figure 8. PC to MCU Programming Circuit

MOTOROLA
13

Lines 50-95 read in the small bootloader from DATA
statements at the end of the listing. The source code for this
bootloader is presented in the DATA statements. The boot-
loaded code makes port C bit 0 low, initializes the X and Y
registers for use by the EPROM programming utility routine
contained in the boot ROM, and then jumps tothat routine. The
hexadecimal values read in from the DATA statements are
converted to binary values by a subroutine. The binary values
are then saved as one string (BOOTCODES$).

The next long section of code (lines 97-1250) reads in the
S-records from an external disk file (in this case, BUF34.519),
converts them to integer, and saves them in an array. The
techniques used in this section show how to convert ASCII
S-records to binary form that can be sent (bootloaded) to an
M68HC11. .

This S-record translator only looks for the S1 records that
contain the actual object code. All other S-record types are
ignored.

When an S1 record is found (line 1000-1024), the next two
characters form the hex byte giving the number of hex bytes to
foliow. This byte is converted to integer by the same subroutine
that converted the bootloaded code from the DATA state-
ments. This BYTECOUNT is adjusted by subtracting 3, which
accounts for the address and checksum bytes and leaves just
the number of object-code bytes in the record.

Starting at line 1100, the two-byte (four-character) starting
address is converted to decimal. This address is the starting
address for the object-code bytes to follow. An index into the
CODE% array is formed by subtracting the base address
initialized at the start of the program from the starting address
for this S-record.

A FOR-NEXT loop starting at line 1130 converts the
object-code bytes to decimal and saves them in the CODE%
array. When all the object-code bytes have been converted
from the current S-record, the program loops back to find the
next S1 record.

A problem arose with the BASIC programming technique
used. The draft versions of this program tried saving the
object-code bytes directly as binary in a string array. This
caused “Out of Memory” or “Out of String Space” errors on
botha 2M Macintosh and a 640K PC. The solutionwas tomake
the array an integer array and perform the integer-to-binary
conversion on each byte as it is sent to the target part.

The one compromise made to accommodate both Macin-
tosh and PC versions of BASIC isin fines 1500 and 1505. Use
line 1500 and comment out line 1505 if the program is to be run
on a Macintosh and, conversely, use line 1505 and comment
out fine 1500 if a PC is used.

After the COM port is opened, the code to be bootioaded is
modified by adding the $FF to the start of the string. $FF
synchronizes the bootloader in the MC68HC711E9 to 1200
baud. The entire string is simply sent to the COM port by
PRINTIing the string. This is possible since the stringis actually
queued in BASIC’'s COM buffer, and the operating system
takes care of sending the bytes out one at a time. The
M68HC11 echoes the data received for verification. No
automatic verification is provided, though the data is printed to
the screen for manual verification.

Once the MCU has received this bootioaded code, the
bootloader automatically jumps to it. The small bootioaded
program in turn includes a jump to the EPROM programming
routine in the boot ROM.

Refer to the previous explanation of the EPROM PRO-
GRAMMING UTILITY for the following discussion. The host
system sends the first byte to be programmed through the
COM port to the SCI of the MCU. The SCI port on the MCU
buffers one byte while receiving another byte, increasing the
throughput of the EPROM programming operation by sending
the second byte while the first is being programmed.

When the first byte has been programmed, the MCU reads
the EPROM location and sends the result back to the host
system. The host then compares what was actually pro-
grammed to what was originally sent. A message indicating
which byte is being verified is displayed in the lower half of the
screen. If there is an error, it is displayed at the top of the
screen.

As soon as the first byte is verified, the third byte is sent. In
the meantime, the MCU has already started programming the
second byte. This process of verifying and queueing a byte
continues until the host finishes sending data. If the program-
ming is completely successful, no error messages will have
beendisplayed at the top of the screen. Subroutines follow the
end of the program to handle some of the repetitive tasks.
These routines are short, and the commenting in the source
code should be sufficient explanation.

MODIFICATIONS: This example programmed version 3.4
of the BUFFALO monitor into the EPROM of an
MCB8HC711E9; the changes to the BASIC program to
download some other program are minor. The necessary
changes are as follows:

1. Inline 30, the length of the program to be downloaded

must be assigned to the variable “CODESIZE%".

2. Alsoinline 30, the starting address of the program is as-
signed to the variable “ADRSTART".

3. Inline 9570, the start address of the program is stored in
the third and fourth items in that DATA statement in hex-
adecimal.

4. If any changes are made to the number of bytes in the
boot code in the DATA statements in lines 9500-9580,
then the new count must be set in the variable
“BOOTCOUNT” in line 25.

OPERATION: Configure the EVBU for boot mode operation
by putting a jumper at J3. Ensure that the trace command
jumper at J7 is not installed because this would connect the
12-V programming voltage to the OCS5 output of the MCU.

Connectthe EVBU to its DC power supply. Whenitis ime to
program the MCU EPROM, turn on the 12-V programming
power supply to the new circuitry in the wire-wrap area.

Connect the EVBU serial port to the appropriate serial port
on the host system. For the Macintosh, this is the modem port
with a2 modem cable. For the MS-DOS computer, it is
connected to COM1 with a “straight through” or modem cable.
Power up the host system and start the BASIC program. lithe
program has not been compiled, this is accomplished from
within the appropriate BASIC compiier orinterpreter. Power up
the EVBU.

Answer the prompt for filename with either a [RETURN] to
accept the default shown or by typing in a new filename and
pressing [RETURN].

The program will inform the user that it is working on
converting the file from S-records to binary. This process will
take from 30 secto a few minutes, depending on the computer.

MOTOROLA
14

AN1060

A prompt reading, “Comm port open?” will appear atthe end
of the file conversion. This is the last chance to ensure that
everything is properly configured on the EVBU. Press-
ing [RETURN] wili send the bootcode to the target
MC68HC711ES. The program then informs the user that the
bootload code is being sent to the target, and the results of the
echoing of this code are displayed on the screen.

Another prompt reading “Programming is ready to begin.
Are you?” will appear. Turn on the 12-V programming power
supply and press [RETURN] to start the actuai programming of
the target EPROM. .

Listing 2. BASIC Program for Personal Computer

A count of the byte being verified will be continually updated
on the screen as the programming progresses. Any failures
will be flagged as they occur.

When programming is complete, a message will be
displayed as well as a prompt requesting you to press
[RETURN] to quit.

Turn off the 12-V programming power supply before turning
off 5V to the EVBU.

Sheet 1 of 3

KRR A KA A AR R AT AR TR R R AR R R AR AR AR KRR RKRRA AR AR AR IR AKX

Vx ESBUF.BAS - A PROGRAM TO DEMONSTRATE THE USE OF THE BOOT MODE

1

2

3

4 ON THE HCll BY PROGRAMMING AN MC68HC711E9 WITH
5 BUFFALO 3.4

6 AL

7 * REQUIRES THAT THE S-RECORDS FOR BUFFALO (BUF34.S19)
8 ¥ BE AVAILABLE IN THE SAME DIRECTORY OR FOLDER

9 *
10 > THIS PROGRAM HAS BEEN RUN BOTH ON A MS-DOS COMPUTER
11 =+ USING QUICKBASIC 4.5 AND ON A MACINTOSE USING
12 = QUICKBASIC 1.0.

14 >

15 AR E AR A KK AR AR TR R A AR R R A R R A A R A AR R R A AR AR A AR AR R XXX RRARK

25 H$ = ™“0123456789ABCDEF”

‘STRING TO USE FOR HEX CONVERSIONS

30 DEFINT B, I: CODESIZE% = 8192: ADRSTART= 57344!

35 BOOTCOUNT = 25
40 DIM CODE% (CODESIZE%)
45 BOOTCODES = “”

‘NUMBER OF BYTES IN BOOT CODE
‘BUFFALO 3.4 IS 8K BYTES LONG
*INITIALIZE BOOTCODES TO NULL

49 REM ***** READ IN AND SAVE THE CODE TO BE BOOT LOADED *****

50 FOR I = 1 TO BOOTCOUNT

55 READ QS

60 AS$ = MIDS(QS, 1, 1)

65 GOSUB 7000

70 TEMP = 16 * X

75 A$ = MIDS(QS, 2, 1)

80 GOSUB 7000

85 TEMP = TEMP + X

90 BOOTCODES = BOOTCODES + CHRS (TEMP)
95 NEXT I

‘# OF BYTES IN BOOT CODE

‘CONVERTS HEX DIGIT TO DECIMAL
‘HANG ON TO UPPER DIGIT

‘BUILD BOOT CODE

96 REM ***** S-RECORD CONVERSION STARTS HERE ***x*

97 FILNAMS$=“BUF34.S519”
100 CLs

‘DEFAULT FILE NAME FOR S-RECORDS

105 PRINT “Filename.ext of S—record file to be downloaded (“;FILNAMS;”) “;

107 INPUT Q$
110 IF Q$<>”” THEN FILNAM$=QS$
120 OPEN FILNAMS FOR INPUT AS #1

130 PRINT : PRINT “Converting “; FILNAMS$; “ to binary...”

999 REM ***** SCANS FOR ‘S1’ RECORDS ***x*
1000 GOsSUB 6000

1010 IF FLAG THEN 1250

1020 IF AS <> “S” THEN 1000
1022 GOSUB 6000

1024 IF AS <> “1” THEN 1000

‘GET 1 CHARACTER FROM INPUT FILE
‘FLAG IS EOF FLAG FROM SUBROUTINE

1029 REM *#***x S] RECORD FOUND, NEXT 2 HEX DIGITS ARE THE BYTE COUNT **x*xx

1030 GOsUB 6000

1040 GOsUB 7000

1050 BYTECOUNT = 16 * X

1060 GOSUB 6000

1070 GOsUB 7000

1080 BYTECOUNT = BYTECOUNT + X
1090 BYTECOUNT = BYTECOUNT - 3

‘RETURNS DECIMAL IN X
‘ADJUST FOR HIGE NIBBLE

‘ADD LOW NIBBLE
‘ADJUST FOR ADDRESS + CHECKSUM

1099 REM ****x NEXT 4 HEX DIGITS BECOME THE STARTING ADDRESS FOR THE DATA ***xx

1100 GOSUB 6000
1102 GOSUB 7000

‘GET FIRST NIBBLE OF ADDRESS
‘CONVERT TO DECIMAL

AN1060

MOTOROLA
15

Listing 2. BASIC Program for Personal Computer Sheet20of 3

1104 ADDRESS= 4096 * X

1106 GOSUB 6000 ‘GET NEXT NIBBLE

1108 GOSUB 7000

1110 ADDRESS= ADDRESS+ 256 * X

1112 GOSUB 6000

1114 GOSUB 7000

1116 ADDRESS= ADDRESS+ 16 * X

1118 GOSUB 6000

1120 GOsSUB 7000

1122 ADDRESS= ADDRESS+ X

1124 ARRAYCNT = ADDRESS-ADRSTART “INDEX INTO ARRAY
1129 REM *****x CONVERT THE DATA DIGITS TO BINARY AND SAVE IN THE ARRAY ***x**
1130 FOR I = 1 TO BYTECOUNT

1140 GOsUB 6000

1150 GOosuB 7000

1160 ¥ =16 * X . ‘SAVE UPPER NIBBLE OF BYTE
1170 GOsSUB 6000

1180 GOSUB 7000

1190 ¥ =Y + X ‘ADD LOWER NIBBLE

1200 CODE% (ARRAYCNT) =Y ‘SAVE BYTE IN ARRAY
1210 ARRAYCNT = ARRAYCNT + 1 ‘INCREMENT ARRAY INDEX
1220 NEXT I

1230 GOTO 1000

1250 CLOSE 1

1499 REM **x** DUMP BOOTLOAD CODE TO PART ****x

1500 ‘OPEN “R”,#2,“COM1:1200,N,8,1” ‘Macintosh COM statement

1505 OPEN “COM1:1200,N,8,1,CD0,CS0,DS0,RS” FOR RANDOM AS #2 ‘DOS COM statement
1510 INPUT “Comm port open”; QS

1512 WHILE LOC(2) >0 ‘FLUSH INPUT BUFFTER

1513 GOSUB 8020

1514 WEND

1515 PRINT : PRINT “Sending bootload code to target part...”

1520 AS = CHRS$(255) + BOOTCODES ‘ADD HEX FF TO SET BAUD RATE ON TARGET HCll
1530 GOSUB 6500

1540 PRINT

1550 FOR I = 1 TO BOOTCOUNT ‘# OF BYTES IN BOOT CODE BEING ECHOED
1560 GOSUB 8000

1564 K=ASC (BS) :GOSUB 8500

1565 PRINT “Character #”; I; ™ received = “; HXS

1570 NEXT I

1590 PRINT “Programming is ready to begin.”: INPUT “Are you ready”; Q$

1595 CLs

1597 WHILE 1LOC(2) > O ‘FLUSE INPUT BUFFER

1598 GOSUB 8020

1599 WEND

1600 XMT = 0: RCV = 0 ‘POINTERS TO XMIT AND RECEIVE BYTES
1610 A$ = CHRS (CODE% (XMT))

1620 GOSUB 6500 ‘SEND FIRST BYTE

1625 FOR I = 1 TO CODESIZE% - 1 “ZERO BASED ARRAY 0 -> CODESIZE-1
1630 A$ = CHRS (CODE%(I)) ‘SEND SECOND BYTE TO GET ONE IN QUEUE
1635 GOSUB 6500 ‘SEND IT

1640 GOsSUB 8000 ‘GET BYTE FOR VERIFICATION

1650 RCV =1I - 1

1660 LOCATE 10,1:PRINT “Verifying byte #”; I; -

1664 IF CHRS$ (CODE%(RCV)) = BS THEN 1670

1665 K=CODE% (RCV) :GOSUB 8500

1666 LOCATE 1,1:PRINT “Byte #”; I; “~ “, “ - Sent “; HXS;

1668 K=ASC (B$) :GOSUB 8500

1669 PRINT ™ Received ”; HXS;

1670 NEXT I

1680 GOSUB 8000 ‘GET BYTE FOR VERIFICATION
1690 RCV = CODESIZE% - 1

1700 LOCATE 10,1:PRINT “Verifying byte #”; CODESIZE%; “ ™

1710 IF CHRS (CODE%(RCV)) = B$ THEN 1720

1713 K=CODE (RCV) :GOSUB 8500

1714 LOCATE 1,1:PRINT “Byte #”; CODESIZE%; “ ”, ™ - Sent ”; HXS;
1715 K=ASC(B$) :GOSUB 8500

1716 PRINT ™ Received ”; HXS;

1720 LOCATE 8, 1: PRINT : PRINT “Done!!!!”

4900 CLOSE

4910 INPUT “Press [RETURN] to quit...”, Q$

5000 END

MOTOROLA AN1060
16

Listing 2. BASIC Program for Personal Computer Sheet 30f 3

5900 AR A LT AT LT A TR T T AT AR AR A AR X RN KA A KRN R AR AR KA AR IR XA T AR IR I KK

5910 *x SUBROUTINE TO READ IN ONE BYTE FROM A DISK FILE

5930 * RETURNS BYTE IN AS

T R L Lt et T R R e e R e L
6000 FLAG = O

6010 IF EOF(l) THEN FLAG = 1: RETURN

6020 A$ = INPUTS (1, #1)

6030 RETURN

G400 NAXEERA A AR K AR KKK KKK KRR R KRR KR K KR IR R R AR AT R X EEAR R AR AR AR AR KK ARAARXXKK IR
6492 ** SUBROUTINE TO SEND THE STRING IN AS$ OUT TO THE DEVICE

6494 ** OPENED AS FILE #2.

TR L R L S SR e S
6500 PRINT #2, AS;

6510 RETURN

6590 [R Y T SRR S SR R AR R R RS AR e R Rl SRl

6594 * SUBROUTINE THAT CONVERTS TEE HEX DIGIT IN A$ TO AN INTEGER

6506 SAKKKE KRR KRR KKK R R R A KRR KKK R R IR AR AR AR T KA RN R RKXRAR AR KX AR AR XK
7000 X = INSTR(HS, AS)

7010 IF X = 0 THEN FLAG = 1

7020 X = X - 1

7030 RETURN

7990 AT KA AT TR TR AR R R A R AR A KA A IR AR A AR AR AL KRR KRR RRARAXRXTAAKRK

7992 ** SUBROUTINE TO READ IN ONE BYTE TEROUGH THE COMM PORT OPENED
7994 ** AS FILE #2. WAITS INDEFINITELY FOR THE BYTE TO BE
7996 ** RECEIVED. SUBROUTINE WILL BE A3SORTED BY ANY

7998 ** KEYBOARD INPUT. RETURNS BYTE IN B$. USES QS.

7999 AT KT TR AT XA TR AR R R AR A AR AR AR A AT R AR AR AR AR AR A AR XA XA S

8000 WHILE LOC(2) = 0 ‘WAIT FOR COMM PORT INPUT

8005 Q$ = INKEY$: IF Q$ <> “” THEN 4900 ‘IF ANY KEY PRESSED, THEN ABORT
8010 WEND

8020 BS = INPUTS (1, #2)

8030 RETURN

8490 AT E KT KK AT TR R TR A AR AR R AR AR R R A A AR AR KRR AR AR KRR KRR R AR A RRRRARRRKTAK

8491 ‘* DECIMAL TO HEX CONVERSION
8492 ‘* INPUT: K - INTEGER TO BE CONVERTED
8493 ‘x OUTPUT: HXS - TWO CHARACTER STRING WITE HEX CONVERSION

8494 AT T KA KRR AR AR TR A R AR R AR R R TR A A A TR R AR KRR A A AR KA AR A AKX RRAXKRK K

8500 IF K > 255 THEN HX$="Too big”:GOTO 8530
8510 HX$=MIDS (HS,K16+1,1)
8520 HX$=HX$+MIDS (HS, (K MOD 16)+1,1)

‘UPPER NIBBLE
‘LOWER NIBBLE

8530 RETURN

9499 AR 233222222 2 22 2R 2 22 BOOT CODE KA AT AT TR KRR R R AR XA XA RAR AKX AN
9500 DATA 86, 23 ‘LDAA #$23

9510 DATA B7, 10, 02 ‘STAZ2 OPT2 make port C wire or

9520 DATA 86, FE ‘LDAA #SFE

9530 DATA B7, 10, 03 ‘STAA PORTC light 1 LED on port C bit 0
9540 DATA Cé6, FF ‘LDAB #SFF

9550 DATA F7, 10, 07 'STAB DDRC make port C outputs

9560 DATA CE, OF, A0 ‘LDX #4000 2msec at 2MHz

9570 DATA 18, CE, EO, 00 ‘LDY #SE000 tart of BUFFALO 3.4

9580 DATA 7E, BF, 00 ‘JIMP SBFOO EPROM routine start address

9590 AR AT R R R AR KA AR AT R AR R AR AR A AR TR AR AR AR AR I A AR A EARRRALA KRR TRRK K

COMMON BOOTSTRAP MODE PROBLEMS e The stack pointer is initialized to the top of RAM.

o Time has passed (two or more SCI character times).

o Timer has advanced from its reset count value.

Users also forget that bootstrap mode is a special mode;
thus privileged control bits are accessible, and write protection
for some registers is not in effect. The bootstrap ROM s in the

it is not unusual for a user to encounter problems with
bootstrap mode because itis new to many users. By knowing
some of the common difficulties, the user can avoid them or at
least recognize and quickly correct them.

Reset conditions vs. conditions as bootloaded program
starts.

it is common to confuse the reset state of systems and
control bits with the state of these systems and control bits
when a bootloaded program in RAM starts. Between these
times, the bootloader program is executed, which changes the
states of some systems and control bits.

e The SCl systemis initialized and turned on (Rx and Tx).

e The SCI system has control of the PD0 and PD1 pins.

e Port D outputs are configured for wire-OR operation.

memory map. The DISRbitinthe TEST1 control registeris set,
which disables resets from the COP and clock monitor
systems.

Since bootstrap is a special mode, these conditions can be
changed by software. The bus can even be switched from
single-chip mode to expanded mode to gain access to external
memories and peripherals.

Connecting RxD to Vgg does not cause the SCI to receive
a break — To force an immediate jump to the start of
EEPROM, the bootstrap firmware looks for the first received

AN1060

MOTOROLA
17

*8)e1 %00}0-3 ZHW-2 18 pneq 0096 Opnjou| 0} 868181 pneq JO Uo|ioelep 81eMYos JjjewoINe ey} spue)xe 1epeojiooq S|yt '8
'sidnuelu) 4900 10 ‘4500 ‘HOL YAOV HIVd 'IdS ‘108 10} S10108A-0pnesd ou eie 816y} ‘edjAep sjy) uo A)jnoes WOHJI 10} pepoeu ededs weiboid vixe ey) o} eng 'L
*ejou uojjeajdde sjy) u) pepnjou; s} NOY deisiooq sjy) 1o} Buys) elejdwiod eyy ‘9
‘lenuely eouesejet +1OHBIN ‘QV/NH |+ LOHBIW eyl uj punoj eq Aew WOH dessiooq sjyi s} Bupsi) ejeidwod ey '
"|0S 6y} ejA sejndwiod jsoy & o} Alowew djyo-uo Jo sjuejud peojdn 0} SUO|SIEA PBJEd|PU) BY) JO WOH deisiooq 8yl uj pepnjou) §| eujNoiqns AN ejqe|jes v 'y
‘1S 8U} B|A POAIBISI BIBP UM WOHJT dyo-uo jo selkq weiBoid o0} suojsien pejesjpu) eyl jo WOH dealsiooq ey) uj pepnjou) s) eujinoigns Aljinn ejqejies v ‘g
‘wesBoud |njBujuesww B Yim pepeo] Aisnojreid sem Y eul J| Injesn Ajuo sj einmee) Wy o duinf eyt

"peInoexe sj WyY Jo beis ey) 0} (dr) dwnf B pue
‘S]BU|LLIB) PEOJUMOP 8L} ‘SBLUY 16}0BIBYD |OS IN0J JBlY "SieloBieyd |OS 1610 ou pue 44$ Buipues Aq peAs|ude 6q UEO joeje ewes ey} ‘peojumop yibue|-ejqelien yiim sedjaep 104
“(ZHW2 = 3 ® pneq 218.) 818s pneq iNejep ey} Je jues
6q Isnw Jejoeseyd GG$ s|yL "peojumop e Bujop uey) Jeyjes Wyl diyo-uo 4o Jeis ey} o} peinoexe si (dNr) dwn(e ‘epow dessiooq uj 18se1 Jeye 1810B1BYD IS1)) 8L} Se POAI8dRl S| GG$ §I "2
*1810B1BYD POA|BIBI 1S1)) BY) SE YEBlq B 68S 0} |OS ey} 8sneo jm AdA o) gx 1 wosj Joisises dnjnd e Bujsn pue gx 1. 0} gxy BulkL "WOHJIT J0 Lels 8yl S) Sseippe sjyi ‘Pejou esim
-184j0 ssejun ‘peojumop & Bujop ueyl J6yes 8jqe) iU} u) SSeippe By} 0} PEINJOXe S| (dWF) dwn| B ‘epow deisjooq uj 16561 18}e JejoeiBYD |OS 151} 6U) Se yeelq & 1o 00$ Bujpues Ag *|

‘S3LON
8'9 SOA SeA 4.€-0800$ - 0800$ 89.-0 - arv.$ 0000$ (@eys | vMIILOHBOOW
8'9 - - 42€-0800$ - 0800$ 892-0 — arvo$ #1088 dsew (0) oe$ ¥ 1LEOHBION
8'e - - 44€-0000$ — 0034$ 2010 — ELED 0000$ (@) 2v$ 1411OHB9OW

9 SOA SOA 441-0000$ - 0098$ 2150 — 6318 0000$ (v)ip$ | 631120HB9OW
] - - 441-0000$ - 0098$ 215-0 S6A 0g63$ | #1esysen - 631103S890W
S - = 44100008 - 0098$ 215-0 - 6363 | #10Ssel - 63110H890W
S - - 441-0000$ - 0098$ 315-0 - 6363 | #1eS)iseN = +3110HBIOW
S — — 4:1-0000$ — 00sg$ 216-0 - 6363$ | #1esseN — 03110HBO0W
S - - 4:4-0000$ 0000$ 009a$ 9gg SOA 0gzas — - 23118038890W
S — — 44-0000$ 0000$ 0098$ 952 - ¢33 0000$ - ¢31180HB9OW
9 SeA SeA 44-0v00$ - WOHJ3-0004$ | 261-0 - eaiL$ 0000$ (@ev$ | €Q1IZOHBIOW
9 - - 44-0v00$ — WOH-0004$ 261-0 — €aus #1608 sen 00$ €041 OHB9OW
S - - 44-0000$ 0000$ 0098$ 952 SoA | #1eSisEN - - 8V 1103S890W
S - - 44-0000$ 0000$ 0008$ 952 — | #1esxsep - - 8V+1OHBIOW
] - - 44-0000$ 0000$ 0098$ 952 — | #wessen - - IV 1HOHB9OW
g — — 44-0000$ 0000$ 0098$ 958 — | #1essen - — 0V OHBIOW
soloN| Aunn Auinn uojje20q gwvdor | o0$ioxua | wbBuey | Apndes | (s'va4asd) | (e'2a1a$®@) | (1ai8$0) #Ued NOW
yGVO1dn | WvHBOHd Wvd dwr uo dinp peojumoq ‘a’l al uojsirey
gWoHd3 unejeq edALNOW | lesyseW | Wod lood

§0In1Ba- PalBjoY-WOH-100g J0 Alewiwng °Z 8|qeL

AN1060

MOTOROLA

18

character to be $00 (or break). The data reception logicin the
SCI looks for a one-to-zero transition on the RxD pin to syn-
chronize to the beginning of a receive character. If the RxD pin
is tied to ground, no one-to-zero transition occurs. The SCI
transmitter sends a break character when the bootloader firm-
ware starts, and this break character can be fed back to the
RxD pin to cause the jump to EEPROM. Since TxD is confi-
gured as an open-drain output, a pullup resistor is required.

An $FF character is required before data is loaded into
RAM — The initial character (usually $FF) that sets the down-
load baud rate is often forgotten.

Original M68HC11 versions required exactly 256 bytes to
be downloaded to RAM — Even users that know about the
256 bytes of downioad data sometimes forget the initial $FF
that makes the total number of bytes required for the entire
download operation equal to 256 + 1 or 257 bytes.

Variable-length download — When on-chip RAM surpassed
256 bytes, the time required to serially load this many charac-
ters became more significant. The variable-length download
feature allows shorter programs to be loaded without sacrific-
ing compatibility with earlier fixed-length download versions of
the bootloader. The end of a download is indicated by an idle
RxD line for atleast four character times. if a personal comput-
er is being used to send the download data to the MCU, there
can be problems keeping characters close enough together to
avoid tripping the end-of-download detect mechanism. Using
1200 as the baud rate rather than the faster defauit rate may
help this problem.

Assemblers often produce S-record encoded programs
which must be converted to binary before bootloading them to
the MCU. The process of reading S-record data from a file and
transiating it to binary can be slow, depending on the personal
computer and the programming language used for the transla-
tion. One strategy thatcan be used to overcome this problem s
to translate the file into binary and store itinto 2 RAM array be-
fore starting the downioad process. Data can then be read and
downloaded without the translation or file-read delays.

The end-of-download mechanism goes into effect when the
initial $FF is received to set the baud rate. Any amount of time
may pass between reset and when the $FF is sent to start the
download process.

EPROM/OTP versions of M68HC11 have an EPROM emu-
lation mode — The conditions that configure the MCU for
EPROM emulation mode are essentially the same as those for
resetting the MCU in bootstrap mode. While RESET is low and
mode select pins are configured for bootstrap mode (low), the
MCU is configured for EPROM emulation mode.

The portpins that are used for EPROMdata I/O lines may be

inputs or outputs, depending on the pin that is emulating the -

EPROM output enable pin (OE). To make these data pins ap-
pear as high-impedance inputs as they would on a
non-EPROM part in reset, connect the PB7/(OE) pin to a pull-
up resistor.

Bootloading a program to perform a ROM checksum —
The bootloader ROM must be tured off before performing the
checksum program. To remove the boot ROM from the
memory map, clear the RBOOT bitin the HPRIO register. This
is normally a write-protected bit that is zero, but in bootstrap
modeitis resetto one and can be written. If the boot ROM s not
disabled, the checksum routine will read the contents of the
boot ROM rather than the user's mask ROM or EPROM at the
same addresses.

Inherent delays caused by double buffering of SCl data—
This problem is troublesome in cases where one MCU is boot-
loading to another MCU.

Because of transmitter double buffering, there may be one
character in the serial shifter as a new character is written into
the transmit data register. In cases such as downloading in
which this two-character pipeline is kept full, a two-character
time delay occurs between when a character is written to the
transmit data register and when that character finishes trans-
mitting. A little more than one more character time delay oc-
curs between the target MCU receiving the character and
echoing it back. If the master MCU waits for the echo of each
downloaded character before sending the next one, the down-
load process takes about twice as long as it would if transmis-
sionis treated as a separate process or if verify datais ignored.

BOOT ROM VARIATIONS

Different versions of the M68HC 11 have different versions of
the bootstrap ROM program. Table 2 summarizes the features
of the boot ROMs in 16 members of the M68HC11 Family.

The boot ROMs for the MC68HC11F1, the MC68HC711K4,
and the MC68HC11K4 allow additional choices of baud rates
for bootloader communications. For the three new baud rates,
the first character used to determine the baud rate is not $FF
as it was in earlier M68HC11s. The intercharacter delay that
terminates the variabie-length download is also different for
these new baud rates. Table 3 shows the synchronization
characters, delay times, and baud rates as they relate to
E-clock frequency.

COMMENTED BOOT ROM LISTINGS

Listings 3-8 contain complete commented listings of the
boot ROM programs in six specific versions of the M6S8HC 11.
Other versions can be found in appendix B of the
M68HC11RM/AD, M68HC 11 Reference Manual.

Table 3. Bootloader Baud Rates

Baud Rates at E-clock =
Sync Timeout

Character Delay 2 MHz 2.1 MH2 3 MHz 3.15 MHz 4 MHz 4.2 MHz
$FF 4 Characters 7812 8192 11,718 12,288 15,624 16,838
$FF 4 Characters 1200 1260 1800 1890 2400 2520
$FO 4.9 Characters 9600 10,080 14,400 15,120 18,200 20,160
$FD 17.3 Characters 5208 5461 7812 8192 10,416 10,922
$FD 13 Characters 3906 4096 5859 6144 7812 8192

AN1060

MOTOROLA
19

Listing 3. MC68HC711E9 Bootloader ROM

KRR AT KA RR R KRR KRR KRR AR XA R IR ANARTR RN I R XKk

* BOOTLOADER FIRMWARE FOR 68HC711E9 - 21 Aug 89

KA KKK AT R R KRR KRR XR AKX R IR AR XA XA XK R h*x

29 0008
30 O000E
31 0016
32 0023

34 0080

36 0028
37 002B
38 002D
39 002E
40 002rF
41 003B

43 0020
44 0001

49 B600
50 B7FF

52 D000
53 FFFF

S5 0000
56 O0I1FF

60 ODBO
61 021B

63 1068

MOTOROLA
20

* Features of this bootloader are...

Revision A -

verify.

* % ok ok b b b b b b o o b F b o % F ok * %

* EQUATES FOR USE WITH INDEX OFFSET = $1000

*

PORTD EQU
TCNT EQU
TOCl EQU
TFLG1 EQU
* BIT EQUATES FOR TFLGl
OC1lF EQU
*

SPCR EQU
BAUD EQU
SCCR2 EQU
SCSR EQU
SCDAT EQU
PPROG EQU
* BIT EQUATES FOR PPROG
ELAT EQU
EPGM EQU
*

$08
SOE
$16
$23

$80

$28
$2B
$2D
S2E
$2F
$3B

$20
s01

* MEMORY CONFIGURATION EQUATES
*

EEPMSTR
EEPMEND
*

EPRMSTR
EPRMEND
*

RAMSTR
RAMEND

* DELAY CONSTANTS
*

DELAYS
DELAYF
*

PROGDEL
*

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU

EQU

$B600
$SB7FF

$D000
SFFEF

$0000
SO1FF

3504
539

4200

At 2.1 MHz

Sheet10f4

Auto baud select between 7812.5 and 1200 (8 MHz)
0 - 512 byte variable length download
Jump to EEPROM at $B600 if 1lst download byte
PROGRAM - Utility subroutine to program EPROM
UPLOAD ~ Utility subroutine to dump memory to host
Mask I.D. at $BFD4 = $71E9

AT KRR KA KRR AR AR KRR AR KT AR A LR AR RR TR RK

= $00

Fixed bug in PROGRAM routine where the first byte
programmed into the EPROM was not transmitted for

Also added to PROGRAM routine a skip of bytes
which were already programmed to the value desired.

This new version allows variable length download
by quitting reception of characters when an idle
of at least four character times occurs

KKK AR KR KR KRR KRR AR R RRAT R R RR AR I AR AIARRAKRK

(FOR DWOM BIT)

Start of EEPROM
End of EEPROM

Start of EPROM
End of EPROM

Delay at slow baud
Delay at fast baud

2 ms programming delay

AN1060

Listing 3. MC68HC711E9 Bootloader ROM Sheet 2 of 4

66 KRR R R KA AR KRR T AR KRR AR AR KR AR AR AR AR R AR RA X AR AR RRERRARRR

67 BFOO ORG $BFOO

68 A AT AR T AR AR AR R AT AR AR R AR AR AR RRAAXARRAKRXKRK

69

70 * Next two instructions provide a predictable place

71 * to call PROGRAM and UPLOAD even if the routines

;g * change size in future versions.

x

74 BF00 7EBF13 PROGRAM JMP PRGROUT EPROM programming utility
75 BFO03 UPLOAD EQU * Upload utility

7

73 RS EEEIEEES S LSS 222222222 22222t ss s Sy

78 * UPLOAD - Utility subroutine to send data from

79 * inside the MCU to the host via the SCI interface.

80 * Prior to calling UPLOAD set baud rate, turn on SCI

81 * and set Y=first address to upload.

82 * Bootloader leaves baud set, SCI enabled, and

83 * Y pointing at EPROM start ($D000) so these default

84 * values do not have to be changed typically.

85 * Consecutive locations are sent via SCI in an

86 * infinite loop. Reset stops the upload process.

87 KRR AT IR E A AR KRR AR R AR R AR AR AR AR AR R KRR XRRA AR

88 BF03 CE1000 LDX #1000 Point to internal registers
89 BF06 182600 UPLOOP LDAA 0,Y Read byte

90 BF09 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE

91 BFOD &A72F STAA SCDAT, X Send it

92 BFOF 1808 INY

93 BF11 20F3 BRA UPLOOP Next...

94

95 FX RS TEIL TSI S22 2222222 2222 2 2222222ttt s 2y

96 * PROGRAM - Utility subroutine to program EPROM.

97 * Prior to calling PROGRAM set baud rate, turn on SCI

98 * set X=2ms prog delay constant, and set Y=first

99 * address to program. SP must point to RAM.
100 * Bootloader leaves baud set, SCI enabled, X=4200
101 * and Y pointing at EPROM start (SD000) so these
102 * default values don’t have to be changed typically.
103 * Delay constant in X should be equivalent to 2 ms
104 * at 2.1 MHz X=4200; at 1 MEz X=2000.
105 * An external voltage source is required for EPROM
106 * programming.
107 * This routine uses 2 bytes of stack space
108 * Routine does not return. Reset to exit.
109 AT AR TR R A A A AR AR A AR T A AR AR AR TR LT R AR RRK
110 BF13 PRGROUT EQU *
111 BFl13 3C PSHEX Save program delay constant
112 BF14 CE1000 LDX #$1000 Point to internal registers
113 BrFl7
114 * Send SFF to indicate ready for program data
115
116 BF17 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
117 BF1lB 86FF 1LDAA #SFF
118 BF1lD A72F STAA SCDAT, X
119
120 BF1F WAIT1 EQU *
121 BF1F 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
122 BF23 E62F LDAB SCDAT, X Get received byte
123 BF25 18E100 CMPB $0,Y See if already programmed
124 BF28 271D BEQ DONEIT If so, skip prog cycle
125 BF22 8620 LDAR #ELAT Put EPROM in prog mode
126 BF2C A73B STAA PPROG, X
127 BF2E 18E700 STAB 0,Y Write the data
128 BF31 8621 LDAA #ELAT+EPGM
129 BF33 A73B STARA PPROG, X Turn on prog voltage
130 BF35 32 PULA Pull delay constant
131 BF36 33 PULB into D-reg
132 BF37 37 PSHB But also keep delay
133 BF38 36 PSHA keep delay on stack
134 BF39 E30E ADDD TCNT, X Delay const + present TCNT
135 BF3B ED16 STD TOC1, X Schedule OCl (2ms delay)
136 BF3D 8680 LDAA #0C1F

137 BF3F A723 STAA TFLG1,X Clear any previous flag
138
139 BF41 1r2380FC BRCLR TFLGl,X OClF * Wait for delay to expire
140 BF45 6F3B CLR PPROG, X Turn off prog voltage
141 *

142 BF47 DONEIT EQU *

AN1060 MOTOROLA
21

Listing 3. MC68HC711E9 Bootloader ROM Sheet 3 of 4

143 BF47 1F2E80FC BRCLR SCSR,X $80 * Wait for TDRE
144 BF4B 18A600 LDAA $0,Y Read from EPROM and...
145 BF4E A72F STAA SCDAT, X Xmit for verify
146 BF50 1808 INY Point at next location
147 BF52 20CB BRA WAIT1 Back to top for next
148 * Loops indefinitely as long as more data sent.
149
150 EE SRR R 2 L e L I R X S 2SI RSS2SR R XSRS 2L]
151 * Main bootloader starts here
152 AR R AT AR AR AR R AR KRR ERRRAXRRRRARRRRKRK
153 * RESET vector points to here
154
155 BF54 BEGIN EQU *
156 BFS54 8EOIFF DS #RAMEND Initialize stack pntr
157 BFS57 CE1000 LDX #1000 Point at internal regs
158 BF5A 1€2820 BSET SPCR,X $20 Select port D wire-OR mode
159 BF5D CCA20C 1DD #s$A20C BAUD in A, SCCR2 in B
160 BF60 A72B - STAA BAUD, X SCPx = <4, SCRx = <4
161 * Writing 1 to MSB of BAUD resets count chain
162 BF62 E72D STAB SCCR2, X Rx and Tx Enabled
163 BF64 CC021B DD #DELAYF Delay for fast baud rate
164 BF67 ED16 STD TOC1,X Set as default delay
165
166 * Send BREAK to signal ready for download
167 BF69 1C2D01 BSET SCCR2,X $01 Set send break bit
168 BF6C 1EQ0801FC BRSET PORTD,X $01 * Wait for RxD pin to go low
169 BF70 1D2p01 BCLR SCCR2,X $01 Clear send break bit
170 BF73
171 BF73 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
172 BF77 A62F 1DAaa SCDAT, X Read data
173 * Data will be $00 if BREAK OR $00 received
174 BF79 2603 BNE NOTZERO Bypass JMP if not 0O
175 BF7B 7EB600 JMP EEPMSTR Jump to EEPROM if it was O
176 BF7E NOTZERO EQU *
177 BF7E 81FF cMPA #SFF $FF will be seen as SFF
178 BF80 2708 BEQ BAUDOK If baud was correct
179 * Or else change to 104 (=13 & =8) 1200 @ 2MHZ
180 BF82 1C2B33 BSET BAUD,X $33 Works because $22 -> $33
181 BF85 CCODBO DD #DELAYS And switch to slower...
182 Br88 ED16 STD TOC1,X delay constant
183 BFS8A BAUDOK EQU *
184 BF8A 18CE0000 LDY #RAMSTR Point at start of RAM
185
186 BFSE WAIT EQU *
187 BF8E EC16 10D TOC1l,X Move delay constant to D
188 BF90 WTLOOP EQU *
189 BFS0 1E2E2007 BRSET SCSR,X $20 NEWONE Exit loop if RDRF set
190 BF94 8F XGDX Swap delay count to X
191 BF95 09 DEX Decrement count
192 BF96 8F XGDX Swap back to D
1893 BF97 26F7 BNE WTLOOP Loop if not timed out
184 BF99 200F BRA STAR Quit download on timeout
195
196 BF9B NEWONE EQU *
197 BFS9B A62F LDAA SCDAT, X Get received data
198 BF9 18a700 STAA $00,Y Store to next RAM location
199 BFA0 A72F STAR SCDAT, X Transmit it for handshake
200 BFa2 1808 INY Point a2t next RAM location
201 BFa4 188C0200 CPY #RAMEND+1 See if past end
202 BFA8 26E4 BNE WAIT If not, Get another
203
204 BFAAR STAR EQU *
205 BFAA CE1068 LDX #PROGDEL Init X with programming delay
206 BFAD 18CED0O0O DY #EPRMSTR Init Y with EPROM start addr
207 BFB1 7E0000 JMP RAMSTR ** EXIT to start of RAM **
208 BFB4
209 b2 2222222222222 X2 X2 X2 2222 22222 2Rttt sl S
210 * Block fill unused bytes with zeros
211
212 BFB4 000000000000 BSZ SBFD1-*
000000000000
000000000000
0006000000000
0000000000
213
214 KKK KT KK AT TR A AR TR LA XARAXAIAAXAXRARKK K
215 * Boot ROM revision level in ASCII
216 * (ORG $BEFD1)
217 BFDl1 41 FCC “a”

MOTOROLA AN1060
22

Listing 3. MC68HC711ES Bootloader ROM Sheet4 of 4

218 AR KT KT AR AL AT XA A RA AR AR AR AR A AR AKX TR XRAR

219 * Mask set I.D. ($0000 FOR EPROM PARTS)

220 * (ORG $BFD2)

221 BFD2 0000 FDB $0000

222 KRR K KKK KA KR K KRR A K KRA KRR KRR EAARARKRRR XTI RRARRRK

223 * “711ES I.D. — Can be used to determine MCU type

224 * (ORG $BFD4)

225 BFD4 71E9 FDB $71E9

226

227 KKK KT AT AR KA AT A TR AR AR IR AAA R AR KK A R XK XK

228 * VECTORS - point to RAM for pseudo~vector JUMPs

229

230 BFD6 00C4 FDB $100-60 SCI

231 BFD8 00C7 FDB $100-57 SPI

232 BFDA 00CA FDB $100-54 PULSE ACCUM INPUT EDGE
233 BFDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
234 BFDE 00DO FDB $100-48 TIMER OVERFLOW

235 BrE0 00D3 . FDB $100-45 TIMER OUTPUT COMPARE 5
236 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
237 BFE4 00D9 FDB $100-3% TIMER OUTPUT COMPARE 3
238 BFE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2
239 BFE8 O00DF DB $100-33 TIMER OUTPUT COMPARE 1
240 BFEA (Q0E2 FDB $100-30 TIMER INPUT CAPTURE 3
241 BFEC 00ES FDB $100-27 TIMER INPUT CAPTURE 2
242 BFEE OOE8 FDB $100-24 TIMER INPUT CAPTURE 1
243 BFF0 O0OEB FDB $100-21 REAL TIME INT

244 BFF2 O0OEE DB $100-18 IRQ

245 BFF4 00F1 FDB $100-15 XIRQ

246 BFF6 00F4 FDB $100-12 SWI

247 BFF8 00F7 FDB $100-8 ILLEGAL OP-CODE

248 BFFa 00FA FDB $100-6 COP FAIL

249 BFFC 00FD FDB $100-3 CLOCK MONITOR

250 BFFE BF54 FDB BEGIN RESET

251 CQ00 END

Symbol Table:

Symbol Name Value Def.# Lire Number Cross Reference
BAUD 0028 *00037 00160 00180

BAUDOK BF8A *00183 00178

BEGIN BF54 *00155 00250

DELAYF 0218 =*00061 00163

DELAYS 0DBO *00060 00181

DONZIT BF47 *00142 00124

EEPMEND B7FF *00050

EEPMSTR B600 *0004S8 00175

ELAT 0020 =*=00043 00125 00128

EPGM 0001 =*00044 00128

EPRMEND FFFFT *000S53

EPRMSTR D000 =*00052 00206

NEWONE BF9B *00196 00189

NOTZERO BF7E *00176 00174

oCiF 0080 =*00034 00136 00139

PORTD 0008 =*00029 00168

PPROG 003B =*00041 00126 00129 00140
PRGROUT BF13 *00110 00074

PROGDEL 1068 =*00063 00205

PROGRAM BFOO *00074

RAMEND O01FF =*00056 00156 00201

RAMSTR 0000 =*00055 00184 00207

SCCR2 002D =*00038 00162 00167 00169

SCDAT 002F =*00040 00091 00118 00122 00145 00172 00197 00199
SCSR 002E =*00039 00090 00116 00121 00143 00171 00189
SPCR 0028 =*00036 00158

STAR BFAA *00204 00194

TCNT 00CE =*00030 00134

TFLGL 0023 =*00032 00137 00139

TOC1 0016 =*00031 00135 00164 00182 00187
UPLOAD BFO03 *00075

UPLOOP BF06 *00089 00093

WAIT BFSE *00186 00202

WAIT1 BF1F *00120 00147

WTLOOP BFS0 *00188 00193

Errors: None
Labels: 35
Last Program Address: SBEFF
Last Storage Address: $0000
Program Bytes: $0100 256
Storage Bytes: $0000 O

AN1060 MOTOROLA
23

Listing 4. MC68HC11D3 Bootloader ROM Sheet 1 of 3

1 KRR AR AR A LR A AR AT AR R R R AR AR R AR RRRARXRRRRNRRR

2 * BOOTLOADER FIRMWARE FOR MC68HC11D3 - 13 Apr 89

3 AR TR AR TR AR R R AR A AR AR LR AR A RA R A RARRRRXR XK KK

g * Features of this bootloader are...

*

6 * Auto baud select between 7812 and 1200 (E = 2 MHz).

7 * 0 - 192 byte variable length download:

8 * reception of characters quits when an idle of at

9 * least four character times occurs.

10 * Jump to EPROM at $F000 if first download byte = $00.

11 * PROGRAM - Utility subroutine to program EPROM.

12 * UPLOAD - Utility subroutine to dump memory to host.

13 * Part I.D. at $BFD4 is $71D3.

14 KRR R AR KRR AR AR R R R AR AR AR RARKRRR AKX XTI RRA XK

15

lg * Equates (registers in direct space)

1 *

18 0008 " PORTD EQU $08

19 0009 DDRD EQU $09
20 00CE TCNT EQU SOE
21 0016 TOC1 EQU $16
22 0023 TFLG1 EQU $23
23 * Bit equates for TFLG1
24 0080 OC1F EQU $80
25 *
26 0028 SPCR EQU $28 (For DWOM bit)
27 002B BAUD EQU $2B
28 002C SCCR1 EQU $2C
29 002D SCCR2 EQU $2D
30 002E SCSR EQU $2E
31 002F SCDAT EQU $2F
32 003B PPROG EQU $3B
33 * Bit equates for PPROG
34 0020 LAT EQU $20
35 0001 EPGM EQU $01
36 *
37 003E TEST1 EQU $3E
38 003F CONFIG EQU $3F
39 *
40
4% * Memory configuration equates
4 *
43 F0OO ROMSTR EQU $F000 Start of ROM
44 FFFF ROMEND EQU SEFFFF End of ROM
45 hd
46 0040 RAMSTR EQU $0040 Start of RAM
47 OOFF RAMEND EQU SOOFF End of RAM
48
49 * Delay constants
S0 *
51 ODBO DELAYS EQU 3504 Delay at slow baud
52 021B DELAYF EQU 539 Delay at fast baud
S3 *
54
55 E2 22 2222222222222 222222222222 222222222222ttt S
56 BF40 ORG $BF40)
57 E: 222 222222222228 223 22222 2 22t a s il sl 2]
58 * Main bootloader starts here
59 E2 22 E 222222222222 22222 2222222222222ttt s

go * RESET vector points to here

1

62 BF40 BEGIN EQU *

63 BF40 8EOOFF LDS #RAMEND Initialize stack pntr
64 BF43 142820 BSET SPCR $20 Select port D wire-OR mode
65 BF46 CCA20C LDD #s$a20C Baud in A&, SCCR2 in B
66 BF4S 972B STAA BAUD SCPx = /4, SCRx = /4
67 * Writing 1 to MSB of BAUD resets count chain

68 BF4B D72D STAB SCCR2 Rx and Tx enabled

69 BF4D CCO021B LDD #DELAYF Delay for fast baud rate
70 BFS50 DD16 STD TOC1 Set as default delay
71

72 * Send BREAK to signal ready for download

73 BF52 142D01 BSET SCCR2 $01 Set send break bit
74 BF55 120801FC BRSET PORTD $01 * Wait for RxD pin to go low
75 BFSS 152D01 BCLR SCCR2 $01 Clear send break bit
76

77 BFSC 132E20FC BRCLR SCSR $20 * Wait for RDRF

78 BF60 962F LDAaA SCDAT Read data

79 * Data will be $00 if BRE2AK or $00 received

80 BF62 2603 BNE NOTZERO Bypass jump if not $00

MOTOROLA AN1060
24

Listing 4. MC68HC11D3 Bootloader ROM Sheet 2 of 3

81 BF64 7EF000 JMP ROMSTR Jump to ROM if it was $00
82 BF67 NOTZERO EQU *

83 BF67 81FF CMPA #SFF $FF will be seen as SFF...
84 BF69 2708 BEQ BAUDCK if baud was correct

85 * Or else change to /104 (/13 & /8) 1200 @ 2MHz

86 BF6B 142B33 BSET BAUD $33 Works because $22 -> $33
87 BF6E CCODBO 1DD #DELAYS And switch to slower...
88 BF71 DD16 STD TOC1 delay constant

89 BF73 BAUDOK EQU *

90 BF73 18CE0040 LDY #RAMSTR Point to start of RAM

91

92 BF77 WAIT EQU *

93 BF77 DE1l6 LDX TOC1 Move delay constant to X

94 BF79 WTLOOP EQU *

95 BF79 122E2009 BRSET SCSR $20 NEWONE Exit loop if RDRF set

96 BF7D 09 DEX Decrement count

97 BF7E 01 NOP Kill...

98 BF7F 01 NOP ...seven cycles.....

99 BF80 2100 BRN *+2 -.to match original program
100 BF82 26F5 BNE WTLOOP Loop if not timed out
101 BF84 200F BRA STAR Quit download on timeout
102
103 BF86 NEWONE EQU *

104 BF86 962F LDAA SCDAT Get received data
105 BF88 18A700 STAA $00,Y Store to next RAM location
106 BF8B 972F STAA SCDAT Transmit it for handshake
107 BF8D 1808 INY Point to next RAM location
108 BFSF 188C0100 CPY #RAMEND+1 See if past end
109 BF93 26E2 BNE WAIT £ not, get another
110
111 BFS9S STAR QU *
112 BFS95 7E0040 JMP RAMSTR ** Exit to start of RAM **
113 TR E T T A A A E R A AT AR AR A RN AR A A AR AR RRAARRRAXAR KRR
114 * Block £ill unused bytes with zerc
115
116 BF98 000000000000 BSZ $BED1-*

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000
117
118 A T KT AR I A A A A AR AT AA AT XA RARARARAXRRRXARARR KK
119 * Boot ROM revision level in ASCII
120 * (ORG $BFD1)
121 BFD1 00 FCB 0
122 ALK AT RA R A TR A AR AT AR AR TR R XXX KRR
123 * Mask set I.D. -
124 * (ORG $BFD2)
125 BFD2 0000 TDB $0000
126 AT KT KA AT A A AKX AR AR XA R AR XRXRATKRKAXRTR KRR
127 * 11D3 I.D. - can be used to determine MCU type
128 * (ORG $BFD4)
129 BFD4 11D3 FDB $11D3
130 KA AR KA E R AR KRR T RRAKRARE IR X R I TR kKK
131 * VECTORS - point to RAM for pseudo-vector JUMPs
132
133 BFD6 00C4 FDB $100-60 SCI
134 BFD8 00C7 FDB $100-57 SPI
135 BFDA 00CA FDB $100-54 PULSE ACCUM INPUT EDGE
136 BEDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
137 BFDE 00DO FDB $100-48 TIMER OVERFLOW
138 BFEO 00D3 FDB $100-45 TIMER OUTPUT COMPARE 5
139 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
140 BFE4 00D9 FDB $100-39 TIMER OUTPUT COMPARE 3
141 BFE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2
142 BFES8 OODF FDB $100-33 TIMER OUTPUT COMPARE 1
143 BFEA 00E2 FDB $100-30 TIMER INPUT CAPTURE 3
144 BFEC 00ES FDB $100-27 TIMER INPUT CAPTURE 2
145 BFEE 00ES8 FDB $100-24 TIMER INPUT CAPTURE 1
146 BFFO 00EB DB $100-21 REAL TIME INT
147 BFF2 O0OEE FDB $100-18 IRQ
148 BFF4 00rl FDB $100-15 XIRQ
149 BFF6 00Fr4 FD3 $100-12 SWI
150 BFF8 00F7 FDB $100-9 ILLEGAL OP-CODE
151 BFFA 00FA FDB $100-6 COP FAIL

AN1060 MOTOROLA
25

Listing 4. MC68HC11D3 Bootloader ROM Sheet 3 of 3

152 BFFC OOFD FDB $100-3 CLOCK MONITOR
153 BFFE Br40 FDB BEGIN RESET
154 €000 END
Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference
BAUD 002B *00027 00066 00086
BAUDOK BF73 *00089 00084

BEGIN BF40 *00062 00153

CONFIG 003F *00038

DDRD 0009 *00019

DELAYF 021B *00052 00069

DELAYS 0DBO *00051 00087

EPGM 0001 *00035

LAT 0020 *00034

NEWONE BF86 *00103 00095

NOTZERO BF67 *00082 00080

OC1F 0080 *00024

PORTD 0008 *00018 00074

PPROG 003B *00032

RAMEND O0OFF *00047 00063 00108
RAMSTR 0040 *00046 00090 00112
ROMEND FFFF *00044

ROMSTR F000 *00043 00081

SCCR1 002C *00028

SCCR2 002D *00029 00068 00073 00075
SCDAT 002F *00031 00078 00104 00106
SCSR 002E *00030 00077 00095

SPCR 0028 *00026 00064

STAR BF95 *00111 00101

TCNT 000E *00020

TEST1 003E *00037

"TFLG1 0023 *00022

TOC1 0016 *00021 00070 00088 00093
WAIT BF77 *00092 00109

WTLOOP BE79 *00094 00100

Errors: None
Labels: 30
Last Program Address: $BFFF
Last Storage Address: $0000
Program Bytes: $00C0 192
Storage Bytes: $0000 O

MOTOROLA AN1060
26

Listing 5. MC68HC711D3 Bootloader ROM

WO JAUTd WN -

AN1060

0008
0009
000E
0016
0023

0080

0028
002B
002¢Cc
002D
002E
002F
003B

0020
0001

003E
003F

F000
FFFF

0040
OOFF

0DBO
021B

1068

BFOO

BFO0O
BFO03

7EBF10

KRR R R AR A AR R A AR AR T RAA AR A AR IR L

* BOOTLOADER FIRMWARE FOR MC68HC711D3 - 28 Aug 90

KRR AT T KRR AT KA R AR KA R AR AR AR RA R RN AR RXRAARAKRRKAY

* oo A b o b o o % %

Features of this bootloader are...

Auto baud select between 7812 and 1200 (E = 2 MHz).
0 - 192 byte variable length download:
reception of characters quits when an idle of at
least four character times occurs.
Jump to EPROM at $F000 if first download byte = $00.
PROGRAM - Utility subroutine to program EPROM.
UPLOAD - Utility subroutine to dump memory to host.
Part I.D. at $BFD4 is $71D3.

AR AR TR KRR A AT A KA AR AR R AR R KA R AR KRR AR RARR AR ARAARAR AR KK

* Revision B -
*

* Changed program delay to 2 mSec at E

2 MHz.

AR AR AR KA KRR A AR A KRR A AR AR RARRAA AR T ARA KRR A RARKK

Revision A -

verify.

* b o o % * *

Fixed bug in PROGRAM routine where the first byte
programmed into the EPROM was not transmitted for

Also added to PROGRAM routine a skip of bytes
which were already programmed to the wvalue desired.

AR AR KRR AR R R AR AR AKX KA AR AR AR AR AKX RRRAR TR R RAKNL

* BEquates (registers in direct space)

*

PORTD EQU
DDRD EQU
TCNT EQU
TOC1 EQU
TFLG1 EQU
* Bit equates for TFLGl
OC1F EQ
*

SPCR EQU
BAUD EQU
SCCR1 EQU
SCCR2 EQU
SCSR EQU
SCDAT EQU
PPROG EQU
* Bit equates for PPROG
LAT EQU
EPGM EQU
*

TEST1 EQU
CONFIG EQU
*

* Memory configuration equates

*

EPRMSTR EQU
EPRMEND EQU
*

RAMSTR EQU
RAMEND EQU

* Delay constants
*

DELAYS EQU
DELAYF EQU
*
PROGDEL EQU
*

$08
$09
SO0E
$16
$23

$80

$28
$2B
s2¢c
$2D
$2E
$2F
$3B

$20
$01

$3E
$3F

$F000
S$EFFT

$0040
SO0FF

3504
539

4200

(For DWOM bit)

Start of EPROM
End of EPROM

Start of RAM
End of RAM

Delay at slow baud
Delay at fast baud

2 mSec programming delay

AR KRR R AR KA AR KRR R R RE T RAR AR KRR AT RRRKR XX AR AR IRK

ORG

$BFO0

KKK AR K AR AR K AR AR AR R A AR AR KA AR AR R XRRARRARKRARRRRAR AR A A kK

* *

* change size in future versions.
*

PROGRaAM JMP PRGROUT
UPLOAD EQU *

Next two instructions provide a predictable place
to call PROGRAM and UPLOAD even if the routines

Sheet 1 of 4

EPROM programming utility

Upload utility

MOTOROLA

Listing 5. MC68HC711D3 Bootloader ROM Sheet 2 of 4

80 KRR RE KRR A AR A AT A KA R R KRR R TR AR RARARRARXRRRRRRRA R

81 * UPLOAD - Utility subroutine to send data from

82 * inside the MCU to the host via the SCI interface.

83 * Prior to calling UPLOAD set baud rate, turn on SCI

84 * and set Y=first address to upload.

85 * Bootloader leaves baud set, SCI enabled, and

86 * Y pointing at EPROM start ($F000) so these default

87 * values do not have to be changed typically.

88 * Consecutive locations are sent via SCI in an

89 * infinite loop. Reset stops the upload process.

90 KKK KT LA LA E R A T A AR A AR AR XA XA RERRRNARR XK

91 BFO03 TUPLOOP EQU *

92 BFO03 18600 Lpaa 0,Y Read byte

93 BF06 132E80FC BRCLR SCSR $80 = Wait for TDRE

94 BF0A 972F STAA SCDAT Send it

95 BFOC 1808 INY

96 BFOE 20F3 - BRA UPLOCP Next....

97

'98 AT AT AR R R AT R R AT A IR ARRY

99 * PROGRAM - Utility subroutine to program EPROM.
100 * Prior to calling PROGRAM set baud rate, turn on SCI
101 * set X=2ms prog delay constant, and set Y=first
102 * address to program. SP must point to RAM.
103 * Bootloader leaves baud set, SCI enabled, X=4200
104 * and Y pointing at EPROM start (SF000) so these default
105 * values do not have to be changed typically.
106 * Delay constant in X should be equivalent to 2 ms
107 * at 2.1 MHz X=4200; at 1 MHz X=2000.
108 * An external voltage source is required for EPROM
109 * programming.
110 * This routine uses 2 bytes of stack space.
111 * Routine does not return. Reset to exit.
112 A KA KKK RA AR KRR E R TR TR RRRXARRXRARARRKR
113 BF10 PRGROUT EQU *
114 * Send S$FF to indicate ready for program data
115 BF1l0 132E80FC BRCLR SCSR $80 * Wait for TDRE
116 BF14 86FF 1DAA #SFF
117 BF16 972F STAR SCDAT
118
1139 Brils WAIT1 EQU *
120 BF18 132E20FC BRCLR SCSR $20 * Wait for RDRF
121 BF1C D62F LDAB SCDAT Get received byte
122 BF1lE 1BE100 CMPB $0,Y See if already programmed
123 BF21 271D BEQ DONEIT If so, skip prog cycle
124 BF23 8620 1LDAA #LAT Put EPROM in prog mode
125 BF25 9738 STAA PPROG
126 BF27 18E700 STaB 0,Y Write data
127 BF2A 8621 LDAR #LAT+EPGM
128 BF2C 973B STAA PPROG Turn on prog voltage
129 BF2E 3C PSHX Save delay on stack
130 BF2F 8F XGDX Put delay into D-reg
131 BF30 38 PULX Save delay in X
132 BF31 D30E ADDD TCNT Delay const + present TCNT
133 BF33 DD16 STD TOC1 Schedule OCl (prog delay)
134 BF35 8680 LDAA #0C1F
135 BF37 9723 STAA TFLGl Clear any previous flag
136
137 BF39 132380FC BRCLR TFLGl OC1lF * Wait for delay to expire
138 BF3D 7F003B CLR PPROG Turn off prog voltage
139 BF40 DONEIT EQU *
140 BF40 132E80FC BRCLR SCSR $80 * Wait for TDRE
141 BF44 182600 LDAA $0,Y Read from EPROM and...
142 BF47 972F STAA SCDAT Xmit for verify
143 BF49 1808 INY Point to next location
144 BF4B 20CB BRA WAIT1 Back to top for next
145 * Loops indefinitely as long as more data sent.
i:s TR AT KR TR AR AR AT TR A AR AR R AR AR T AR ARNRRARTRNK

148 * Main bootloader starts hezre

149 AT AR TR AR AT T TR AR AR R AR AR AR XA XA XA KK

150 * RESET vector points to here

151

152 BF4D BEGIN EQU *

153 BF4D BEOOFF LDS #RAMEND Initialize stack pntr
154 BFS0 142820 BSET SPCR $20 Select port D wire-OR mode
155 BFS3 CCAa20C LDD #s$A20C Baud in A, SCCR2 in B
156 BFS6 972B STAA BAUD SCPx = /4, SCRx = /4
157 * Writing 1 to MSB of BAUD resets count chain

158 BFS8 D72D STAB SCCR2 Rx and Tx enabled

159 BF5A CC021B LDD #DELAYF Delay for fast baud rate

MOTOROLA AN1060
28

Listing 5. MC68HC711D3 Bootloader ROM Sheet 3 of 4

160 BFSD DD16 STD TOC1 Set as default delay
161
162 * Send BREAK to signal ready for download
163 BFSE 142D01 BSET SCCR2 $01 Set send break bit
164 BF62 120801FC BRSET PORTD $01 * Wait for RxD pin to go low
122 BF66 152D01 BCLR SCCR2 $01 Clear send break bit
1
167 BF69 132E20FC BRCLR SCSR $20 * Wait for RDRF
168 BF6D 962F LDAA SCDAT Read data
169 * Data will be $00 if BREAK or $00 received
170 BF6F 2603 BNE NOTZERO Bypass jump if not $00
171 BF71 7EF000 JMP EPRMSTR Jump to EEPROM if $00
172 BF74 NOTZERO EQU *
173 BF74 B1FF CMPA #SFF SFF will be seen as $FF...
174 BF76 2708 BEQ BAUDOK if baud was correct
175 * Or else change to /104 (/13 & /8) 1200 @ 2MHz
176 BF78 142B33 . BSET BAUD $33 Works because $22 -> $33
177 BF7B CCODBO 1DD #DELAYS And switch to slower...
178 BF7E DD16 STD TOC1 delay constant
179 BF80 BAUDOX EQU *
180 BF80 18CE0040 DY #RAMSTR Point to start of RAM
181
182 Br84 WAIT EQU *
183 BF84 DE16 LDX TOC1 Move delay constant to X
184 BF86 WTLOOP EQU *
185 BT86 122E2009 BRSET SCSR $20 NEWONE Exit loop if RDRF set
186 Br8a 0° DEX Decrement count
187 BF8s 01 NOP Kill...
188 Br8C 01 NOP ...seven cycles.....
189 BF8D 2100 BRN *+2 ..to match original program
190 BF8F 26F5 BNE WTLOOP Loop if not timed out
191 BF91 200F BRA STAR Quit download on timeout
192
193 BFS3 NEWONE EQU *
184 BFO93 962F LDAA SCDAT Get received data
195 BF95 18A700 STAA $00,Y Store tc next RAM location
196 BF98 972F STAA SCDAT Transmit it for handshake
197 BFSA 1808 INY Point to next RAM location
198 BFOC 188C0C100 CPY #RAMEND+1 See if past end
199 BFAQ 2622 BNE WAIT If not, get another
200
201 BFA2 STAR EQU *
202 BFA2 CE1068 LDX #PROGDEL Init X with program delay
203 BFA5 18CEF000 LDY #EPRMSTR Init Y with EPROM start addr
204 BFAS 7E0040 JMP RAMSTR ** Exit to start of RAM **
205 KA KA A E AR KT R AR AR R AR XA AT RRARRRARRA R RKA K
206 * Block £fill unused bytes with zero
207
208 BFAC 000000000000 BSZ $BFD1-*
000000000000
000000000000
000000000000
000000000000
000000000000
00
208
210 KKK KK AT A A AT AR AR AR AR RRAXAX X R KRR KRR
211 * Boot ROM revision level in ASCII
212 * (ORG $BFD1)
213 BFDL 42 FCC “B”
214 A2 22 RS 2RSS al s st R R a2 X2 X2 X
215 * Mask set I.D. ($0000 for EPROM parts)
216 * (ORG $BFD2)
217 BFD2 0000 FDB $0000
218 KA AT AT A A TR T A RA R AT AR RAARXRRAAAXTX XXX KK
219 * 711D3 I.D. - can be used to determine MCU type
220 * (CRG SBFD4)
221 3FD4 71D3 FDB $71D3
222 KKK AR AR TR XA R R AT R AR AR XA RARKRXRRRRRRAKR TR
223 * VECTORS - point to RAM for pseudo-vector JUMPs
224
225 BFD6 00C4 FDB $100-60 SCI
226 BFD8 00C7 FDB $100-57 SPI
227 BFDA 00CA FDB $100-54 PULSE ACCUM INPUT EDGE
228 BFDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
229 BFDE 00DO FDB $100-48 TIMER OVERFLOW
230 BFEQ 00D3 FDB $100-45 TIMER OUTPUT COMPARE 5
231 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
232 BFE4 00D9 FDB $100-39 TIMER OUTPUT COMPARE 3
233 BFE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2

AN1060 MOTOROLA
29

Listing 5. MC68HC711D3 Bootloader ROM Sheet 4 of 4

234 BFE8 00DF FDB $100-33 TIMER OUTPUT COMPARE 1
235 BFEA 00E2 FDB $100-30 TIMER INPUT CAPTURE 3
236 BFEC 0OES FDB $100-27 TIMER INPUT CAPTURE 2
237 BFEE 00ES8 FDB $100-24 TIMER INPUT CAPTURE 1
238 BFF0 O0OEB FDB $100-21 REAL TIME INT
239 BFr2 00EE FDB $100-18 IRQ

240 BFF4 00F1 FDB $100-15 XIRQ

241 BFF6 00F4 FDB $100-12 SWI

242 BFF8 00F7 FDB $100-9 ILLEGAL OP-CODE
243 BFFA OOFA FDB $100-6 COP FAIL

244 BFFC 00FD FDB $100-3 CLOCK MONITOR
245 BFFE BF4D FDB BEGIN RESET

246 CO00 END

Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference

BAUD 002B *00039 00156 00176

BAUDOK BF80 *00179 00174

BEGIN BF4D *00152 00245

CONFIG 003F *00050

DDRD 0009 *00031

DELAYF 021B *00064 00159

DELAYS 0DBO *00063 00177

DONEIT BF40 *00139 00123

EPGM 0001 *00047 00127

EPRMEND FEFF *00056

EPRMSTR FOOO *00055 00171 00203

LAT 0020 *00046 00124 00127

NEWONE BFS93 *00193 00185

NOTZERO BF74 *00172 00170

OC1lF 0080 *00036 00134 00137

PORTD 0008 *00030 00164

PPROG 003B *00044 00125 00128 00138

PRGROUT BF10 *00113 00077

PROGDEL 1068 *00066 00202

PROGRAM BFOOQ *00077

RAMEND OOFF *00059 00153 00198

RAMSTR 0040 *00058 00180 00204

SCCR1 002C *00040

SCCR2 002D *00041 00158 00163 00165

SCDAT 002F *00043 00094 00117 00121 00142 00168 00194 00196

SCSR 002E *00042 00093 00115 00120 00140 00167 00185

SPCR 0028 *00038 00154

STAR BFA2 *00201 00191

TCNT 000E *00032 00132

TEST1 003E *00049

TFLG1 0023 *00034 00135 00137

TOCL 0016 *00033 0C133 00160 00178 00183

UPLOAD BF03 *00078

UPLOOP BF03 *00091 00096

WAIT BF84 *00182 00199

WAIT1 BF18 *00119 00144

WTLOOP BF86 *00184 00190

Errors: None
Labels: 37
Last Program Address: S$BFFF
Last Storage Address: $0000
Program Bytes: $0100 256
Storage Bytes: $0000 ©

MOTOROLA AN1060
30

Listing 6. MC68HC11F1 Bootloader ROM Sheet 1 of 3

l t2 2R 2222222 R RS2 2 22 X2 2 R 2 XY 2
2 * BOOTLOADER FIRMWARE FOR MC68HC11lFl - 04 May 90
3 AT A A AT A AR A AR A AR A AR KRR XTI R RRR R RARRRXAXRRREARK
4 * Features of this bootloader are...
5 *
(3 * Auto baud select between 7812, 1200, 9600, 5208
7 * and 3906 (E = 2 MHz).
8 * 0 - 1024 byte variable length download:
9 * reception of characters quits when an idle of at
10 * least four character times occurs. (Note: at 9600
11 * baud rate this is almost five bit times and at
12 * 5208 and 3906 rates the timeout is even longer).
13 * Jump to EEPROM at $FE00 if first download byte = $00.
14 * Part I.D. at $BFD4 is S$F1F1l.
15 AR AL AR TR A AR AR A AR T ARRRR AR AT R XA R AKX
16 * Revision B -
17 . *
18 * Added new baud rates: 5208, 3906.
19 AT A A A AR AR TR AT KRR AT XA R XTI R IR
20 * Revision A -
21 *
22 * Added new baud rate: 9600.
23 KA E ALK KT AT AT T AR AR XX A AR AR R R RN R AR
24
25 * Equates (use with index offset = $1000)
26 *
27 0008 PORTD EQU $08
28 0009 DDRD EQU $09
29 0016 TOC1 EQU $16
30 0028 SPCR EQU $28 (for DWOM bit)
31 002B BAUD EQU $2B
32 002C SCCR1 EQU $2C
33 002D SCCR2 EQU $2D
34 002E SCSR EQU $2E
35 002F SCDAT EQU $2F
36 003B PPROG EQU $33
37 003E TEST1 EQU $3E
38 003F CONFIG EQU $3F
39
40 * Memory configuration equates
41 *
42 FEOO EEPSTR EQU $FEO00 Start of EEPROM
43 FFEFF EEPEND EQU SEFFF End of EEPROM
44 *
45 0000 RAMSTR EQU $0000 Start of RAM
46 03FF RAMEND EQU SO3FF End of RAM
47
48 * Delay constants
49 *
50 0DBO DZLAYS EQU 3504 Delay at slow baud rate
51 021B DELAYF EQU 539 Delay at fast baud rates
52 *
53 ALK AR A AR A A AT AR AR A A XA R AT RXR AR XXX K
54 BF00 ORG SBF0OO
55 t2 2 22222 2SSttt iRttt 22 X
56 * Main bootloader starts here
57 EE 222222 222222222222t sttt X2 22 203
58 * RESET vector points to here
59 BF0O BEGIN EQU *
60 Br00 8EO3FF LDS #RAMEND Initialize stack pntr
61 BF03 CE1000 LDX #$1000 X points to registers
62 BF06 1C2820 BSET SPCR,X $20 Select port D wire-OR mode
63 BF09 CCBOOC DD #$B00OC Baud in A, SCCR2 in B
64 BFOC A72B STAA BAUD,X SCPx = /13, SCRx = /1
65 * Writing 1 to MSB of BAUD resets count chain
66 BFOE E72D STAB SCCR2,X Rx and Tx enabled
67 BF10 CC021B LDD #DELAYF Delay for fast baud rates
68 BFl3 ED16 STD TOC1,X Set as default delay
69
70 * Send BREAK to signal start of download
71 BF15 1C2D01 BSET SCCR2,X $01 Set send break bit
72 BF18 1E0801FC BRSET PORTD,X $01 * Wait for RxD pin to go low
73 BF1C 1D2D01 BCLR SCCR2,X $01 Clear send break bit
74
75 BF1F 1F2E20FC BRCLR SCSR,X $20 * Wait for RDRF
76 BF23 A62F LDAA SCDAT,X Read data
77 * Data will be $00 if BREAK or $00 received

AN1060

MOTOROLA
31

Listing 6. MC68HC11F1 Bootloader ROM

Sheet20of 3

78 BF25 2603 BNE NOTZERO Bypass jump if not $00
79 BF27 7EFE00 JMP EEPSTR Jump to EEPROM if it was $00
80 Br2a NOTZERO EQU *
81 * Check div by 13 (9600 baud at 2 MEz) .
82 BF2A 81F0 CMPA #S$FO SFO0 will be seen as $FO...
83 BF2C 271D BEQ BAUDOK if baud was correct
84 * Check div by 104 (1200 baud at 2 MHz)
85 BF2E C633 LDAB #833 Initialize B for this rate
86 BF30 8180 CMPA #$80 SFF will be seen as $80...
87 BF32 2710 BEQ SLOBAUD if baud was correct
88 * Check div by 32 (3906 baud at 2 MHz)
89 * (equals: 8192 baud at 4.2 MHz)
90 BF34 C605 LDAB #$05 Initialize B for this rate
91 BF36 8520 BITA #$20 $FD shows as bit 5 clear...
92 BF38 2702 BEQ SLOBAUD if baud was correct
93 * Change to div by 16 (7812 baud at 2 MHz)
94 . * (equals: 8192 baud at 2.1 MHz)
95 BF3A C622 LDAB #$22 Initialize B for this rate
96 BF3C E72B STAB BAUD, X
97 BF3E 8508 BITA #508 S$FF shows as bit 3 set...
98 BF40 2609 BNE BAUDOK if baud was correct
99 * Change to div by 24 (5208 baud at 2 MHz)
100 * (equals: 8192 BAUD at 3.15 MHz)
101 BF42 C613 LDAB #$13 By default
102
103 BF44 SLOBAUD EQU *
104 BF44 E72B STAB BAUD, X Store baud rate
105 BF46 CCODBO LDD #DELAYS Switch to slower...
106 BF49 ED16 STD TOCL,X delay constant
107 BF4B BAUDOXK EQU *
108 BF4B 18CE0000 DY #RAMSTR Point to start of RaAM
109
110 BF4F WAIT EQU *
111 BF4F EC16 LDD TOCL,X Move delay constant to D
112 BF51 WTLOOP EQU *
113 BFS1 1E2E2007 BRSET SCSR,X $20 NEWONE Exit loop if RDRF set
114 BFS55 8F XGDX Swap delay count to X
115 BF56 09 DEX Decrement count
116 BF57 8F XGDX Swap back to D
117 BF58 26F7 BNE WTLOOP Loop if not timed out
118 BFSA 200F BRA STAR Quit download on timeout
119
120 BFSC NEWONE EQU *
121 BF5C A62F LDARA SCDAT, X Get received data
122 BFS5E 18A700 STAR $00,Y tore to next RAM location
123 BF61 A72F STAA SCDAT, X Transmit it for handshake
124 BF63 1808 INY Point to next RAM location
125 BF65 188C0400 CPY #RAMEND+1 See if past end
126 BF69 26E4 BNE WAIT If not, get another
127
128 BF6B STAR ZQU *
129 BF6B 7E0000 RAMSTR ** Exit to start of RAM **
130 A KT KT T TR TR LR AR AR KT R R AR AR ARAXARRNRNRK K
131 * Block fill unused bytes with zero
132
133 BF6E 000000000000 BSZ S$BFD1-*
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000
134
135 KA ALK R KT KT T AR IR AR RN I XK ARKRAKRARR IR IR KX XXX RN
136 * Boot ROM revision level in ASCII
137 * (ORG S$BFD1)
138 BFD1 42 FCC “B”
139 KA AR AR KRR A TR T KK A AT R A RRXRRTR TR XTI XA T AN
140 * Mask set I.D. - ($0000 for ROMless parts)
141 * (ORG $BFD2)
142 BFD2 0000 FDB $0000
143 P2 XTI EE IS S22 S22 S22 222222 2Rl sl s
144 * 11F1 I.D. - can be used to determine MCU type
145 * (ORG $BFD4)
146 BFD4 F1F1 FDB SF1Fl
147 EEETEIEREESL SRR SRS 2 R R X2 R 2R R sttt S S XY

MOTOROLA AN1060
32

Listing 6. MC68HC11F1 Bootloader ROM Sheet 3 0f 3

148 * VECTORS - point to RAM for pseudo-vector JUMPs
149
150 BFD6 00C4 FDB $100-60 sCI
151 BFD8 00C7 FDB $100-57 SPI
152 BFDA 00CA FDB $100-54 " PULSE ACCUM INPUT EDGE
153 BFDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
154 BFDE 00DO FDB $100-48 TIMER OVERELOW
155 BFEO 00D3 FDB $100-45 TIMER OUTPUT COMPARE 5
156 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
157 BFE4 00DS FDB $100-39 TIMER OUTPUT COMPARE 3
158 BFE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2
159 BFE8 00DF FDB $100-33 TIMER OUTPUT COMPARE 1
160 BFEA 00E2 FDB $100-30 TIMER INPUT CAPTURE 3
161 BFEC 0Q0E5 FDB $100-27 TIMER INPUT CAPTURE 2
162 BFEE 00OES8 FDB $100-24 TIMER INPUT CAPTURE 1
163 BFFO OOEB FDB $100-21 REAL TIME INT
164 BFF2 0OEE B FDB $100-18 IRQ
165 BFF4 00F1 FDB $100-15 XIRQ
166 BFF6 00F4 FDB $100-12 SWI
167 BFF8 00F7 FDB $100-9 ILLEGAL OP-CODE
168 BFFA 00FA FDB $100-6 COP FAIL
169 BFFC 00FD FDB $100-3 CLOCK MONITOR
170 BFFE BFO00 FDB BEGIN RESET
171 C000 END

Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference

BAUD 0028 *00031 00064 00096 00104

BAUDOK BF4B *00107 00083 00098

BEGIN BFOO *00059 00170

CONFIG 003F =*00038

DDRD 0009 *00028

DELAYF 021B *00051 00067

DELAYS 0DBO *00050 00105

EEPEND FFFE *00043

EEPSTR FEOO *00042 00079

NEWONE BFS5C *00120 00113

NOTZERO BF2A *00080 00078

PORTD 0008 *00027 00072

PPROG 003B *00036

RAMEND O3FF *00046 00060 00125

RAMSTR 0000 *00045 00108 00129

SCCR1 002C *00032

SCCR2 002D *00033 00066 00071 00073

SCDAT 002F *00035 00076 00121 00123

SCSR 002E *00034 00075 00113

SLOBAUD BF44 *00103 00087 00092

SPCR 0028 =*00030 00062

STAR BréB *00128 00118

TEST1 003E =*00037

TOCl 0016 *00029 00068 00106 00111

WAIT BF4F *00110 00126

WTLOOP BF51 *00112 00117

Errors: None
Labels: 26
Last Program Address: S$BFFF
Last Storage Address: $0000
Program Bytes: $0100 256
Storage Bytes: $0000 O

AN1060 MOTOROLA
33

Listing 7. MC68HC11K4 Bootloader ROM Sheet 1 0f 4

1 KRR KRR A E AR R R AR KRR KRR AR XXX RT IR AKX
2 * BOOTLOADER FIRMWARE FOR MC68HC11K4 - 18 Jul 90
A 3 AR A E TR E R A AR AR AR KRR AR R R AR AR R KRR RARRN AR I AR AR KK
4 * Features of this bootloader are...
5 *
6 * Auto baud select between 7812, 1200, 9600, 5208
7 * and 3906 (E = 2 MHz).
8 * 0 - 768 byte variable length download:
9 * reception of characters quits when an idle of at
10 * least four character times occurs. (Note: at 9600
11 * baud rate this is almost five bit times and at
12 * 5208 and 3906 rates the timeout is even longer).
13 * Jump to EEPROM at $OD80 if first download byte = $00.
14 * PROGRAM - Utility subroutine to program EPROM.
15 * UPLOAD - Utility subroutine to dump memory to host.
16 * Part I.D. at $BFD4 is $044B.
17 KKK R AT TR R AR TR KRR RERAKAAIRARAEKRRAARKL K
18
19 * EBEquates (registers in direct space)
20 *
21 0004 PORTB EQU $04
22 0005 PORTF EQU $05
23 0008 PORTD EQU $08
24 0009 DDRD EQU $09
25 *
26 000E TCNT EQU $SOE
27 0016 TOC1 EQU $16
28 0023 TFLG1 EQU $23
29 * Bit equates for TFLGl
30 0080 OC1F EQU $80
31 *
32 002B EPROG EQU $2B
33 * Bit equates for EPROG
34 0020 ELAT EQU $20
35 0001 EPGM EQU $01
36 *
37 003B PPROG EQU $3B
38 003E TEST1 EQU S3E
39 003F CONFIG QU $3F
40 *
41 0070 SCBD EQU $70
42 0072 SCCR1 EQU $72
43 0073 SCCR2 EQU $73
44 0074 SCSR1 EQU $74
45 0075 SCSR2 EQU $75
46 0076 SCDRH EQU $76
47 0077 SCDRL EQU $77
48
49 * Memory configuration equates
50 *
51 0D80 EEPMSTR EQU $0D80 Start of EEPROM
52 OFFF EEPMEND EQU SOFFF End of EEPROM
53. *
54 2000 ROMSTR EQU $2000 Start of ROM
55 7FFF ROMEND EQU S$TEEF . End of ROM
56 *
57 0080 RAMSTR EQU $0080 Start of RAM
58 037F RAMEND EQU $037F End of RAM
59
60 * Delay constants
61 *
62 15AB DELAYS EQU 5547 Delay at slow baud rate
63 0356 DELAYF EQU 854 Delay at fast baud rates
64 *
65 1068 PROGDEL EQU 4200 2 mSec programming delay
66 * at 2.1MHz
67 *
68 BE40 CYCLCOD EQU $BE40 EPROM cycling code (TEST)
*
sg PXI TR RIS SRS S SRS 222222222 X2 X222 2 22222222222 22 2L
71 BFOO ORG $BFOO
72 A KA TR T A AT R AR AR R XXX AKRAXR AKX
73 * Main bootloader starts here
74 AT AR AR KT AR R TR R AR R A AR AR AR AR AKX A TR KS
75 * RESET vector points to here
76 BFOO BEGIN EQU *
77 BF0O 8EQ037F LDS #RAMEND Initialize stack pntr
78 XXX Tk KTk
79 * Special jump for EEPROM Cycling routine
80 * (This is intended for factory test only)

MOTOROLA AN1060
34

Listing 7. MC68HC11K4 Bootloader ROM

81
82

BFO3
BFO6
BFO9

BFOB
BEOE

89 BFOE

BF1ll

91 BF13
92 BFl6é
93 BF18
94 BF1B

96 BF1D
97 BF20
98 BF24

100 BF27
101 BF2B

103 BF2D
104 BF2F
105 BF32

107 BF32
108 BF34

110 BF36
111 BF38
112 BF3A

115 BF3C
116 BF3E
117 BF40

118
118

120 BF42
121 BF44
122 BF46
123 BF48

124
125

126 BF42A

127

128 BF4C
129 BF4C
130 BF4E
131 BFS1
132 BFS3
133 BFS3

134

135 BFS7
136 BFS7
137 BFS59
138 BF5S
139 BFSD
140 BFSE
141 BF60

142

143 BFé62
144 BF62
145 BF64
146 BF67
147 BF69
148 BF6B
149 BF6F

150
151
152
153
154
1ss

AN1060

BF71
BF71

CC9696
1A9304
2603

TEBE40

€coo1a
DD70
cc400¢
DD72
€Co356
DD16

147301
120801FC,
157301

137420FC
9677

2603
7E0D8O

81F0
271D

C6eD0
8180
2710

C640
8520
270a

c620
D771
8508
2609

C630

D771
CCl5aB
DD16

18CE0080

DE1l6

12742005
09

2679
200F

9677
182700
9777
1808
188C0380
266

7E0080

Sheet20of 4

* If ports B and F both have %1001 0110 on them ...

LDD #$9696
CPD PORTB
BNE CONTINU
* ... then execute the cycling code
JMP CYCLCOD
CONTINU EQU *
LDD #5001A
STD SCBD
LDD #$400C
STD SCCR1
LDD #DELAYF
STD TOCL
* Send BREAK to signal ready for download
BSET SCCR2 $01
BRSET PORTD $01 *
BCLR SCCR2 $01
BRCLR SCSR1 $20 *
LDAA SCDRL
* Data will be $00 if BREAK or $00 received
BNE NOTZERO
JMP EEPMSTR
NOTZERO EQU *
* Check div by 26 (9600 baud at 2 MHz)
CMPA #S$FO
BEQ BAUDOK
* Check div by 208 (1200 baud at 2 MH2)
LDAB #$DO
CMPA #$80
BEQ SLOBAUD

* Check div by 64 (3906 baud at 2 MHz)
* (equals: 8192 baud at 4.2 MHz)

* Change to div by 32 (7812 baud at 2 MHz)

LDAB
BITA
BEQ

#540
#$20
SLOBAUD

* (equals: 8192 baud at 2.1 MHz)

* Change to div by 48 (5208 baud at 2 MHz)

LDAB
STAB
BITA
BNE

#$20
SCBD+1
#$08
BAUDOK

* (equals: 8192 BAUD at 3.15 MHz)

SLOBAUD

BAUDOK

WAIT

WILOOP

NEWONE

STAR

LDAB

EQU
STAB
LDD
STD
EQU
LDY

EQU

EQU

#$30

*

SCBD+1
#DELAYS
TOC1

*

#RAMSTR

*

TOC1

*

SCSR1 $20 NEWONE

WILOOP
STAR

*

SCDRL
$00,Y
SCDRL

#RAMEND+1
WAIT

*

RAMSTR

Port F follows port B

Initialize baud for...
9600 baud at 2 MHz

Put SCI in wire-OR mode...
Enable Xmtr and Rcvr
Delay for fast baud rates
Set as default delay

Set send break bit
Wait for RxD pin to go low
Clear send break bit

Wait for RDRF
Read data

Bypass jump if not $00
Jump to EEPROM if $00

$F0 will be seen as SFO...
if baud was correct

Initialize B for this rate
$FF will be seen as $80...
if baud was correct

Initialize B for this rate
$FD shows as bit 5 clear...
if baud was correct

Initialize B for this rate

SFF shows as bit 3 set...
if baud was correct

By default

Store baudrate
Switch to slower...
delay constant

Point to start of RAM

Move delay constant to X

Exit loop if RDRF set
Decrement count

Loop if not timed out
Quit download on timeout

Get received data

Store to next RAM location
Transmit it for handshake
Point to next RAM location
See if past end

If not, get another

** Exit to start of RAM **

KKK KA AR A A AT AR KKK AR KRKARRARRRA AR AR AR

* Block fill unused bytes with zero

MOTOROLA
35

Listing 7. MC68HC11K4 Bootloader ROM Sheet30f4

156 BF74 00000000000C BSZ $BFD1-*

000000000000

000000000000

000000000000

000000000000

000000000000

- 000000000000

000000000000

000000000000

000000000000

000000
157
158 R R 2SI R 22 L] 2
159 * Boot ROM revision level in ASCII
160 * (ORG $BFD1)
161 BFD1 30 FCC “0”
162 R s e L
163 ’ * Mask set I.D. - set with user’s ROM code mask layer
164 * (ORG $BFD2)
165 BFD2 0000 FDB $0000 Reserve 2 bytes
166 KA R K KKK AT KKK KA KKK K KRR KRR RKIARRIRRRL KKK AKX KKK
167 * 11K4 I.D. - can be used to determine MCU type
168 * (note: $4B = K in ASCII)
169 * (ORG $BFD4)
170 BFD4 044B FDB $044B
171 KRR T KK KKK R R AT R KRR KR KA RIERA KRR KRR ARARRX KT RTAK
172 * VECTORS - point to RAM for pseudo-vector JUMPs
173
174 BFD6 00C4 FDB $100-60 SCI
175 BFD8 00C7 FDB $100-57 SPI
176 BFDA 00Ca FDB $100-54 PULSE ACCUM INPUT EDGE
177 BFDC 00CD FDB $100-51 PULSE ACCUM OVERFLOW
178 BFDE 00DO FDB $100-48 TIMER OVERFLOW
179 BFEQ 00D3 FDB $100-45 TIMER OUTPUT COMPARE 5
180 BFE2 00D6 FDB $100-42 TIMER OUTPUT COMPARE 4
181 BFE4 00DS FDB $100-39 TIMER OUTPUT COMPARE 3
182 2FE6 00DC FDB $100-36 TIMER OUTPUT COMPARE 2
183 BFE8 00DF FDB $100-33 TIMER OUTPUT COMPARE 1
184 BFEA 00E2 FDB $100-30 TIMER INPUT CAPTURE 3
185 BFEC OOES FDB $100-27 TIMER INPUT CAPTURE 2
186 BFEE O0OES8 FDB $100-24 TIMER INPUT CAPTIURE 1
187 BFFO0 OOEB FDB $100-21 REAL TIME INT
188 BFF2 OOEE FDB $100-18 IRQ
189 BFF4 OOF1 FDB $100-15 XIRQ
190 BFF6 0OF4 FDB $100-12 SWI
191 BFF8 00F7 FDB $100-9 ILLEGAL OP-CODE
192 BFFA O0FA FDB $100-6 COP FAIL
193 BFFC OOFD FDB $100-3 CLOCK MONITOR
194 BFFE BF00O FDB BEGIN RESET
195 Co000 END

MOTOROLA AN1060
36

Listing 7. MC68HC11K4 Bootloader ROM Sheet 4 of 4

Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference
BAUDOK BFS3 *00132 00108 00123
BEGIN BFO0 *00076 00194
CONFIG 003F *00039

CONTINU BFOE *00087 00084
CYCLCOD BE40 *00068 00086

DDRD 0009 *00024

DELAYF 0356 *00063 00093
DELAYS 15aB *00062 00130
EEPMEND OFFF *00052

EEPMSTR 0D80 *00051 00104

ELAT 0020 *00034

EPGM 0001.*00035

EPROG 002B *00032

NEWONE BF62 *00143 00138
NOTZERO BF32 *00105 00103

OC1F 0080 *00030

PORTB 0004 *00021 00083

PORTD 0008 *00023 00097

PORTF 0005 *00022

PPROG 003B *00037

PROGDEL 1068 *00065

RAMEND 037F *00058 00077 00148
RAMSTR 0080 *00057 00133 00152
ROMEND TEFF *00055

ROMSTR 2000 *00054

SCBD 0070 *00041 00090 00121 00129
SCCR1 0072 *00042 00092

SCCR2 0073 *00043 00096 00098
SCDRH 0076 *00046

SCDRL 0077 *00047 00101 00144 00146
SCSR1 0074 *00044 00100 00138
SCSR2 0075 *00045

SLOBAUD BF4C *00128 00112 00117
STAR BF71 *00151 00141

TCNT 000E *00026

TEST1 003E *00038

TFLG1 0023 *00028

TOC1 0016 *00027 00094 00131 00136
WAIT BF57 *00135 00149
WTLOO? BF59 *00137 00140

Errors: None
Labels: 40
Last Program Address: $BFFF
Last Storage Address: $0000
Program Bytes: $0100 256
Storage Bytes: $0000 O

AN1060 MOTOROLA
37

Listing 8. MC68HC711K4 Bootloader ROM

WO d W

0004
0005
0008
0009

000E
0016
0023

0080
002B

0020
0001

003B
003E
003F

0070
0072
0073
0074
0075
0076
0077

0D80
OFFF

2000
TEFF

0080
037F

15aB
0336
1068
BE40

BFOO

MOTOROLA

38

Sheet 1 of 5

KKK T A AT R AT AR AR IAXRKAKRRRAKRAX KK K%

* BOOTLOADER FIRMWARE FOR MC68HC711K4 - 25 Apr 90

KA A A KA AR AT AL AN AR R LA KA AR AR AR A AR A AR AR R AKX AR XA N KK

* Features of this bootloader are...

ook b b ok b R b d ok % F

Auto baud select between 7812,
and 3906 (E = 2 MHz).
0 - 768 byte variable length download:
reception of characters quits when an idle of at
least four character times occurs.
baud rate this is almost five bit times and at
5208 and 3906 rates the timeout is even longer) .
Jump to EEPROM at $0D80 if first download byte = $00.
PROGRAM - Utility subroutine to program EPROM.
UPLOAD - Utility subroutine to dump memory to host.
Part I.D. at $BFD4 is $744B.

9600, 5208

(Note: at 9600

AR A KA R KRR KA AT AR R AKX KRR A XA RARRRIX R KRR N KKK

* Revision B -
*

* Added new baud rates:

5208, 3906.

KA AR R AT AR AR AR A A XA KRR I XNKXARTKRRRRAARKI A AT IR A XARXK

* Revision A -
*

* Added new baud rate:

9600.

AT E KKK T A KA KRR KRR TR R XA AR R AT ARKRARX AR AKX XK

* Equates (registers in direct space)

*

PORTB EQU
PORTF EQU
PORTD EQU
DDRD EQU
*

TCNT EQU
TOC1 EQU
TFLG1 EQU
* Bit equates for TFLGl
OC1F EQU
*

EPROG EQU
* Bit equates for EPROG
ELAT EQU
EPGM EQU
*

PPROG EQU
TEST1 EQU
CONFIG EQU
*

SCBD EQU
SCCR1 EQU
SCCR2 EQU
SCSR1 EQU
SCSR2 EQU
SCDRE EQU
SCDRL EQU

* Memory configuration equates
*

EEPMSTR EQU
EEPMEND EQU
*

EPRMSTR EQU
EPRMEND EQU
*

RAMSTR EQU
RAMEND EQU

* Delay constants
*

DELAYS EQU
DELAYF EQU
*
PROGDEL EQU
*
*
CYCLCOD EQU
*

$04
$0S
$08
$09

SOE
$16
$23

$80
$2B

$20
$01

$3B
$3E
$3F

$70
$72
$73
$74
$75
$76
$77

$0D80
SOFTT

$2000
$TEFF

$0080
$037F

5547
854

4200

$BE40

Start of EEPROM
End of EEPROM

Start of EPROM
End of EPROM

Start of RaM
End of RAM

Delay at slow baud rate
Delay at fast baud rates

2 mSec programming delay
at 2.1MHz

EPROM cycling code (TEST)

KA E KKK AT AR AT T AR T TR XA ARRXIAXAKRRRAAR XXX XK

ORG

$BFOO

AR E T AR AT A A A AKX AT KA AKX KA RN XRRLXRRRK KK N K

Listing 8. MC68HC711K4 Bootloader ROM Sheet20f 5

82 * Next two instructions provide a predictable place
83 * to call PROGRAM and UPLOAD even if the routines
84 * change size in future versions.
85 *
86 BF00 7EBF1D PROGRAM JMP PRGROUT EPROM programming utility
87 BFO03 UPLOAD EQU * Upload utility
88
39 ALK R A AT AR AL A TR RAR R KRR RN ARRRRRRXRRR R AR KK
90 * UPLOAD - Utility subroutine to send data from
91 * inside the MCU to the host via the SCI interface.
92 * Prior to calling UPLOAD set baud rate, turn on SCI
93 * and set Y=first address to upload.
94 * Bootloader leaves baud set, SCI enabled.
95 * Consecutive locations are sent via SCI in an
96 * infinite loop. Reset stops the upload process.
97 KA KA A A AR R AT AR T AR AT XRARAR XA XXX KK
98 BF03 8DOD BSR INIT Initialization subroutine
99 :
100 BFOS UPLOOP EQU *
101 BFO5 18A600 Lpaa O0,Y Read byte
102 BFOB 137480FC BRCLR SCSR1 $80 * Wait for TDRE
103 BFOC 9777 STAA SCDRL Send it
104 BFr0E 1808 INY
105 BF10 20F3 BRA UPLOOP Next....
igg R E AT T AR AR R A AR A A AR R TR X RAXARRARNXRARA AR R
108 * Initialization subroutine - Forces EPROM to be
109 * enabled at $2000 so it is not overlapped by the
110 * BOOTLOADER firmware.
111 * User’s address in index Y is adjusted to point to
112 * EPROM in this space instead of $A000.
113 AR TR A A AR AR AL A A XA TARRARARARARARRRATRT AT X %N
114 BF12 INIT EQU *
115 BF12 860F LDAA #S0OF EPROM is turned on
116 BF14 973F STAA CONFIG at address $2000
117 BF16 188F XGDY Get user’s address
118 BF18 847F ANDA #$7F Clear bit 15 of address
119 BF1lA 188F XGDY Return adjusted address
120 BFiC 39 RTS
121
122 AR A A AR AR IR R AR AT AR ARRARARATRARXX TR KX R K KK
123 * PROGRAM - Utility subroutine to program EPROM.
124 * Prior to calling PROGRAM set baud rate, turn on SCI
125 * set X=2ms prog delay constant, and set Y=first
126 * address to program. SP must point to RAM.
127 * Bootloader leaves baud set, and SCI enabled so these
128 * default values do not have to be changed typically.
129 * Delay constant in X should be equivalent to 2 ms
130 * at 2.1 MHz X=4200; at 1 MHz X=2000, at 4MEz X=8000.
131 * An external voltage source is required for EPROM
132 * programming.
133 * This routine uses 2 bytes of stack space.
134 * Routine does not return. Reset to exit.
135 AR AR AR TR R AT AR R R AR R AR RNRA AR R XA AR K
136 BF1D PRGROUT EQU *
137 BF1D 8DF3 BSR INIT
138 * Send SFF to indicate ready for program data
139 BF1F 137480FC BRCLR SCSR1 $80 * Wait for TDRE
140 BF23 86FF LDAA #SFF
141 BF25 9777 STAA . SCDRL
142 * WAIT FOR A BYTE
143 BF27 WAIT1 EQU *
144 BF27 137420FC BRCLR SCSR1 $20 * Wait for RDRF
145 BF2B D677 LDAB SCDRL Get received byte
146 BF2D 18E100 cMPB $0,Y See if already programmed
147 BF30 271D BEQ DONEIT If so, skip prog cycle
148 BF32 8620 LDAA #ELAT Put EPROM in prog mode
149 BF34 972B STAA EPROG
150 BF36 18E700 STAB 0,Y Write data
151 BF39 8621 LDAA #ELAT+EPGM
152 BF3B 972B STAA EPROG Turn on prog voltage
153 BF3D 3C PSHX Save delay on stack
154 BF3E 32 PULA Put delay into D-reg
155 BF3F 33 PULB
156 BF40 D30OE ADDD TCNT Delay const + present TCNT
157 BF42 DDi6 STD TOC1 Schedule OCl (prog delay)
158 BF44 8680 LDAA #OC1F
159 BF46 9723 STAA TFLG1 Clear any previous flag
160
161 BF48 132380FC BRCLR TFLGl OClF * Wait for delay to expire

AN1060 ' MOTOROLA
39

Listing 8. MC68HC711K4 Bootloader ROM Sheet30f 5

162 BF4C 7F002B CLR EPROG Turn off prog voltage
163 BF4F DONEIT EQU *
164 BF4F 137480QFC BRCLR SCSR1 $80 * Wait for TDRE
165 BFS53 18A600 LDAA $0,Y Read from EPROM and...
166 BF56 9777 STAAR SCDRL Xmit for verify
167 BF58 1808 INY Point to next location
168 BF5Aa 20CB BRA WAIT1 Back to top for next
169 * Loops indefinitely as long as more data sent.
7
%72 t2 222222222 R 2222222222222 X222 222222222 X X3
172 * Main bootloader starts here
173 E2 22 222222 RSt iR 22 22X 2 X2 R X3
174 * RESET vector points to here
175 BFSC BEGIN EQU *
176 BFS5C 8EOQO37F LDS #RAMEND Initialize stack pntr
177 % J Jo K K K kK
178 . - * Special jump for EEPROM Cycling routine
179 * (This is intended for factory test only)
180 * If ports B and F both have %1001 0110 on them ...
181 BFSF CC9696 DD #$9696
182 BF62 1A9304 CPD PORTB Port F follows port B
183 BF65 2603 BNE CONTINU
184 * ... then execute the cycling code
185 BF67 7EBE40 JMP CYCLCOD
186 BF6A CONTINU EQU *
187
188 BF6A CC001a LDD #s0012 Initialize baud for...
189 BF6D DD70 STD SCBD 9600 baud at 2 MHz
190 BF6F CC400C LDD #$400C Put SCI in wire-OR mode...
191 BF72 DD72 STD SCCR1 Enable Xmtr and Rcvr
192 BF74 CC0356 LDD #DELAYF Delay for fast baud rates
193 BF77 DD16 STD TOC1 Set as default delay
194 * Send BREAK to signal ready for download
195 BF79 147301 BSET SCCR2 $01 Set send break bit
196 BF7C 120801FC BRSET PORTD $01 * Wait for RxD pin to go low
197 BF80 157301 BCLR SCCR2 $01 Clear send break bit
198
199 BF83 137420FC BRCLR SCSR1 $20 * Wait for RDRF
200 BF87 9677 LDAA SCDRL Read data
201 * Data will be $00 if BREAK or $00 received
202 BF89 2603 BNE NOTZERO Bypass jump if not $00
203 BF8B 7EQD80 JMP EEPMSTR Jump to EEPROM if $00
204 BFS8E NOTZERO EQU *
205 * Check div by 26 (9600 baud at 2 MHz)
206 BF8E 81F0 CMPA #SFO $FO0 will be seen as S$FO...
207 BF90 271D BEQ BAUDOK if baud was correct
208 * Check div by 208 (1200 baud at 2 MHz)
209 BF92 C6D0 1DAB #SDO Initialize B for this rate
210 BF94 8180 cMPA #$80 S$FF will be seen as $80...
211 BF96 2710 BEQ SLOBAUD if baud was correct
212 * Check div by 64 (3906 baud at 2 MHz)
213 * (equals: 8192 baud at 4.2 MHz)
214 BF98 C640 LDAB #$40 Initialize B for this rate
215 BF9A 8520 BITA #$20 SFD shows as bit 5 clear...
216 BF9C 2702 BEQ SLOBAUD if baud was correct
217 * Change to div by 32 (7812 baud at 2 MHz)
218 * (equals: 8192 baud at 2.1 MHz)
219 BFOE C620 LDAB #$20 Initialize B for this rate
220 BFAO0 D771 STAB SCBD+1
221 BFA2 8508 BITA #$08 S$FF shows as bit 3 set...
222 BFA4 2609 BNE BAUDOK if baud was correct
223 * Change to div by 48 (5208 baud at 2 MHz)
224 * (equals: 8192 BAUD at 3.15 MHz)
225 BFA6 €630 LDAB #$30 By default
226
227 BFAS8 SLOBAUD EQU *
228 BFA8 D771 STAB SCBD+1 Store baudrate
229 BFAA CC15aB LDD #DELAYS Switch to slower...
230 BFAD DD16 STD TOC1 delay constant
231 BFAF BAUDOK EQU *
232 BFAF 18CE0080 LDY #RAMSTR Point to start of RAM
233
234 BFB3 WAIT EQU *
235 BFB3 DE1l6 LDX TOC1 Move delay constant to X
236 BFBS WTLOOP EQU *
237 BFB5 12742005 BRSET SCSR1 $20 NEWONE Exit loop if RDRF set
238 BFB9 09 DEX Decrement count
239 BFBA 26F9% BNE WTLOOP Loop if not timed out
240 BFBC 200F BRA STAR Quit download on timeout
241

MOTOROLA AN1060
40

Listing 8. MC68HC711K4 Bootioader ROM

242 BFBE
243 BFBE
244 BFCO
245 BFC3
246 BFCS
247 BFC7
248 BFCB
249
250 BFCD
251 BFCD
252
253
254
255 BFDO
256
257
258
259
260 BFD1
261
262
263
264 BFD2
265
266
267
268
269 BFD4
270
271
272
273 BFD6
274 BFD8
275 BEDA
276 BEDC
277 BEDE
278 BFEO
279 BFE2
280 BFE4
281 BFE6
282 BFES
283 BFEA
284 BFEC
285 BFEE
286 BFFO
287 BFF2
288 BFF4
289 BFF6
290 BFF8
291 BFFA
292 BFFC
293 BFFE
294 C000

AN1060

9677
18A700
9777
1808
188C0380
26E6

7E0080

00

42

0000

744B

00C4
00C7
ooca
00CD
00D0
00D3
00D6
00DS
00DC
00DF
00E2
00ES
0CES
OCEB
00EE
00F1
00F4
00F7
00FA
00FD
BF5C

Sheet4 of 5

NEWONE EQU *

LDARA SCDRL Get received data

STAA $00,Y Store to next RAM location

STAA SCDRL Transmit it for handshake

INY Point to next RAM location

CcpY #RAMEND+1 See if past end

BNE WAIT If not, get another
STAR EQU *

RAMSTR ** Exit to start of RAM **

R I A KRR TR TR T X A XA AR A AA X AAX AR AR KX
* Block £ill unused bytes with zero

BSZ $BFD1-*

KKK KKK KT LXK AR KR TR KA A AR KRR AARKRARARAKRAK KRR AKX AR KKK

* Boot ROM revision level in ASCII
* (ORG $BFD1)

FCC “B”
AT A AT A AR KRR AR AT A AR AR RRRARRARRRA AR AKX KR
* Mask set I.D. ($0000 for EPROM parts)
* (ORG $BFD2)

FDB $0000
AT A KT E TR AR RA R KKK RAARXAARRK R AN K KKKk K
* 711K4 I.D. - can be used to determine MCU type
* (note: $4B = K in ASCII)
* (ORG SBFD4)

FDB $744B

KA A KT KR A A AR A XK AR AR R AKX KRR RAXARARRAKRARKK

* VECTORS - point to RAM for pseudo-vector JUMPs

FDB $100-60 SCI

FDB $100-57 SPI

FDB $100-54 PULSE ACCUM INPUT EDGE
FDB $100-51 PULSE ACCUM OVERFLOW
FDB $100-48 TIMER OVERFLOW

FDB $100-45 TIMER OUTPUT COMPARE 5
FDB $100-42 TIMER OUTPUT COMPARE 4
FDB $100-39 TIMER OUTPUT COMPARE 3
FDB $100-36 TIMER OUTPUT COMPARE 2
FDB $100-33 TIMER OUTPUT COMPARE 1
FDB $100-30 TIMER INPUT CAPTURZ 3
FDB $100-27 TIMER INPUT CAPTURE 2
FDB $100-24 TIMER INPUT CAPTURE 1
FDB $100-21 REAL TIME INT

FDB $100-18 IRQ

FDB $100-15 XIRQ

FDB $100-12 SWI

FDB $100-9 ILLEGAL OP-CODE

FDB $100-6 COP FAIL

FDB $100-3 CLOCK MONITOR

FDB BEGIN RESET

END

MOTOROLA
41

Listing 8. MC68HC711K4 Bootioader ROM Sheet5of 5

‘Symbol Table:

Symbol Name Value Def.# Line Number Cross Reference
BAUDOK BFAF *00231 00207 00222
BEGIN BFS5C *00175 00293

CONFIG 003F *00047 00116

CONTINU BF6A *00186 00183

CYCLCOD BE40 *00076 00185

DDRD 0009 *00032

DELAYF 0356 *00071 00192

DELAYS 15aB *00070 00229

DONEIT BF4F *00163 00147

EEPMEND OFFF *00060

EEPMSTR 0D80 *00059 00203

ELAT 0020 *00042 00148 00151

EPGM 0001 *00043 00151

EPRMEND 7FFF *00063

EPRMSTR 2000 *00062

EPROG 002B *00040 00149 00152 00162
INIT BF12 *00114 00098 00137
NEWONE BFBE *00242 00237

NOTZERO BFS8E *00204 00202

OC1lF 0080 *00038 00158 00161

PORTB 0004 *00029 00182

PORTD 0008 *00031 00196

PORTF 0005 *00030

PPROG 003B *00045

PRGROUT BF1D *00136 00086

PROGDEL 1068 *00073

PROGRAM BFO00 *00086

RAMEND 037F *00066 00176 00247
RAMSTR 0080 *00065 00232 00251

SCBD 0070 *00049 0018S 00220 00228
SCCR1 0072 *00050 00191

SCCR2 0073 *00051 00195 00197

SCDRH 0076 *00054

SCDRL 0077 *00055 00103 00141 00145 00166 00200 00243 00245
SCSR1 0074 *00052 00102 00139 00144 00164 00199 00237
SCSR2 0075 *00053

SLOBAUD BFA8 *00227 00211 00216

STAR BFCD *00250 00240

TCNT 000E *00034 00156

TEST1 003E *00046

TFLG1 0023 *00036 00159 00161

TOC1 0016 *00035 00157 00193 00230 00235
UPLOAD BF03 *00087

UPLOOP BFOS *00100 00105

WAIT BFB3 *00234 00248

WAIT1 BF27 *00143 00168

WTLOOP BFBS *00236 00239

Errors: None
Labels: 47
Last Program Address: $BFFF
Last Storage Address: $0000
Program Bytes: $0100 256
Storage Bytes: $0000 O

MOTOROLA AN1060
42

This page intentionally left blank.

MOTOROLA
AN1060 43

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any lability arising out of the application or use of any product or circuit,
and specifically disclaims any and all fiability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicais” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmiess
against all claims, costs, damages, and expenses, and reasonable attomey fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Mobrolaand@areregis&etedh‘adennfksofMotorola.hnMomrola. Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorata Semiconductors H.K. Lid.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

[] @ MOTOROLA
’ AN1
’ R A

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

