
Assessment of the Realtime Preemption Patches (RT-Preempt) and

their impact on the general purpose performance of the system

Siro Arthur

Research Fellow, Distributed And Embedded Systems Lab ( DSLab)
Lanzhou University, China

Distributed & Embedded Systems Lab, School Of Information Science and Engineering

Tianshui South Rd 222L̇anzhou 730000 ṖṘĊhina
siro@lzu.edu.cn

Carsten Emde

Open Source Automation Development Lab, OSADL
Carsten.Emde@osadl.org

Nicholas Mc Guire

Distributed And Embedded Systems Lab ( DSLab)
Lanzhou University, China

mcguire@lzu.edu.cn

Abstract

With the maturing of the Realtime Preemption Patches (RT-Preempt) and their stepwise integration
into the Mainline Linux kernel since version 2.6.18, we set out to answer the questions:

* How good is RT-Preempt with respect to the worst-case latency?
* How expensive is RT-Preempt with respect to a possible performance degradation of the system?
Taking that a lot of the preemption techniques deployed have their origin in scalability demands and

not so much in realtime requirements, the most interesting case to look into is related to uni-processors
- on these we would expect the worst-case impact of RT-Preempt. To answer the question, we ran an
extensive benchmark series on 2.8-GHz P4 and 1-GHz/600MHz VIA CIII boards, measuring general
OS performance parameters as well as the realtime capabilities. For the latter, a trivial parport toggle
program was used.

The results show that high-end CPUs are well supported by RT-preempt in general. Low-end systems
typically of interest for automation and control, however, still need some work.

In this paper we will outline the method used for evaluation and present the details of the results.
This work was partly supported by the Open Source Automation Development Lab (OSADL).
Keywords: RT-Preempt, Jitter, Performance

1 Introduction

Linux is a General Pupose Operating System
(GPOS) and as such is designed to provide good
overall throughput rather than guarantee determin-
istic response for applications requiring real time.
Though stock Linux has support for POSIX real time
scheduling policies (SCHED FIFO, SCHED RR),

these ’services’ only increase the priority of an ap-
plication but did not necessarily make the rest of the
system more preemptive. Thus the configurability
of task policies was included but the ability of the
system to honor these in all situation was still lim-
ited - though it should be noted that creating the
necessary infrastructure to allow managing real-time
capabilities of tasks/threads was the first (and quite

1



large) step towards real-time in mainstream Linux.

Over the last decade or so, there have been
several attempts to add real time capabilities to
Linux. At present, several ways of approaching
real time Linux have been proposed and/or imple-
mented [1] [2][3]. However, as far as hard real
time is concerned, interrupt abstraction techniques
- RTLinux[4], RTAI[5], L4/Fiasco[6], ADEOS[7],
Xenomai[8], XtratuM[9] - have been ( and still are)
the most widely used - at least in the free/open
source community.

The key issue with regard to preemptibility is
management of interrupt disable sections - the re-
sponsiveness of a system is limited by the amount of
time (proportional to the code length) which is ex-
ecuted with disabled interrupts in addition to hard-
ware related artefacts that can’t really be attributed
to the OS in question. Thus Interrupt abstrac-
tion makes the entire GPOS kernel preemptive by
adding a Hardware Abstraction Layer (HAL) to in-
tercept and manage the interrupts depriving Linux
of ever really disabling hardware interrupts - though
the RTOS layer still has interrupt-disable sections of
course, these are substantially shorter due to sim-
plicity and sheer size of the respective RTOS HAL,
and the RTOS HAL implementation have been de-
signed from the very beginning with this problem
in mind. Basically, a relatively small patch is ap-
plied to the kernel that diverts interrupt/timer con-
trol from Linux to an RT nanokernel/microkernel
as soon as it gets loaded, i.e. the nanokernel it-
self is implemented as (a) Linux kernel module(s).
It includes a real-time scheduler that runs Linux as
the lowest priority thread (with respect to its real-
time threads/domains), thereafter. This technique
is capable of guaranteeing true hard real-time for
GNU/Linux. Since it involves minimal modifications
to the Linux kernel, it is probably the leanest and
cleanest approach to adding real-time to Linux from
a theoretical stand-point.

The main drawback with this method is that the
available API and resources are limited - unrestricted
access to the full plethora of GNU/Linux libraries is
imposible without losing determinism. Another little
snag is that code has to be run for kernel space, which
is slightly more difficult to implement and/or debug
and errors have more severe consequences, though
both L4/Fiasco and XtratuM have addressed this is-
sue by providing seperated addresss spaces for real-
time domains.

However, there exists the LXRT userspace re-
altime module of RTAI that allows user space pro-
gramming with a slight penalty of performance to ac-
cess user-space resources when not in RT-mode and
switch to RT-mode by a dedicated system call - then

of course again with the aformentioned constraints.

Clearly the disadvantage of all of these ap-
proaches is the maintenance issue, the need for pro-
grammers to learn to opperate in multiple paradigms
and interact between these efficiently and without
side-effects. Further these approaches don’t really
benefit the existing applications and unfortunately
many have missed appropriately addressing stan-
dards conformance - further complicating the ability
to utilize them efficiently.

Lastly, there has been conciderable license re-
lated issues, which have been clarified by a number
of technological developments that advanced the RT-
capabilities of the HAL concept beyond the infamous
FSMLabs patent.

Now, despite the advantages and wide-scale us-
age of the interrupt abstraction technique, the only
realtime Linux approach that has garnered main-
stream (Linux) acceptance is the preemption im-
provement patch. Started back in the 2.2.X kernel
days by ingo molnar and Kurt Dougan continuously
advancing with TimeSys’ and MontaVista’s efforts
to improve preemptiveness in the context of main-
stream linux and finally leading to a number of key
design descisions regarding locking and scheduling
during the transition to the 2.6.X series of kernels
that set the environment necessary to target real-
time in mainstream Linux.

This is a patch set that is maintained by a small
group of (core) mainstream developers, led by Ingo
Molnar. It allows nearly all of the kernel to be pre-
empted, with the exception of a few very small re-
gions of code (”raw spinlock critical regions”) - and
the long standing uglyness of some historic code se-
quences (i.e. ttys). This is done by replacing most
kernel spinlocks with mutexes that support priority
inheritance and are preemptive, as well as moving all
interrupt and software interrupts to kernel threads.
(dubbed interrupt threading), which by giving them
there own context allows them to sleep among other
things.

It further incorporates high resolution timers -
a patch set, which is independently maintained by
Thomas Gliexner [10]. The high resolution timer
patch allows precise timed scheduling and removes
the dependency of timers on the periodic scheduler
tick (jiffies) [11]. According to documentation found
at rt.wiki.org, the high resolution time patch enables
POSIX timers and nanosleep() to be as accurate as
the hardware allows (around 1usec on typical hard-
ware).

And as noted - along these big building blocks for
kernel preemptivness, a lot of smaller changes related
to scalability of Linux on multiprocessor systems
have increased the real-time performance dramati-

2



cally. Notably the introduction of RCU, lock-free
synchronisation concepts (i.e. sequence-locks) and
the years of removing the Big Kernel Lock (BKL) by
fine-grain resource local locking, have had a profound
impact on the ability to achieve improved preemp-
tiveness. It should be noted that these efforts are by
no means at there end and that building awareness
of the scalability issues and the real-time constraints
has simply taken a very long time - the transition
from ”thinking UP” to ”thinking SMP” has made it
to the kernel developer community - the next step of
”thinking RT” is still in progress.

However, from a hard real-time perspective, it
has been argued that with this approach, it is im-
possible to guarantee the worst case latency for it is
not feasible to test all control paths the kernel may
take - and therefore impossible to guarantee hard
real time. Figures provided are therefore statistical
in nature rather than conclusive. This has been sub-
ject to a lot of discussion and debate; several articles
and threads in various mailing lists.

But with the maturing of the realtime preemp-
tion patch set and its stepwise integration into the
Mainline Linux kernel since version 2.6.18, we set out
to find out its ’viability’ with respect to worst case
latency and how expensive it was with respect to a
possible performance degradation of the GNU/Linux
system.

Now, taking that a lot of the preemption tech-
niques deployed have their origin in scalability de-
mands and not so much in realtime requirements, the
most interesting case to look into is related to uni-
processors - on these we would expect the worst-case
impact of RT-Preempt. We ran an extensive bench-
mark series on 2.8-GHz P4 and 1-GHz and 600MHz
VIA CIII boards, measuring general OS performance
parameters as well as the realtime capabilities. For
the latter, a trivial parport toggle program was used.

This - we think - could be of particular inter-
est to the Automation and Control Community as it
directly maps to interacting with peripheral devices
which is generally the critical issue for Automation.

2 Methodology

We selected three kernels: 2.6.21.5, 2.6.22.1 and
2.6.23-rc1. We chose to test multiple kernels reduce
the chances of results being too specific to a kernel
version. For the software benchmark, the LMbench
test suite was used. LMbench is one of the most
commonly used system level benchmarks that has
generally shown reliable results. Essentially, we used
lmbench to compare the un-patched kernels against
patched kernels. For each patched kernel version,
separate benchmarks were run against kernels of dif-

ferent RT related configuration settings. Now, while
individual results might not be absolutely reliable
with respect to absolute numbers ( as these are quite
system specific e.g. motherboard type etc), the com-
parison holds valid and is a clear indication of the
impact that the RT related modifications at kernel
level can have on system performance.

However, in order to not rely on software bench-
marking alone, we also ran a simple hardware test
to observe jitter. This consisted of a simple pro-
gram that toggled the output of the parallel port
producing a sqaure wave. Basically, this simple real-
time thread requested to be scheduled periodically at
50us to produce a pulse with an ON interval of 50us
at every 1ms. We chose ’at every 1ms’ for we wanted
to produce clear pictures with ’discernable’ jitter for
the different kernel configurations. While not a strict
scientific method, it does ensure that the entire hard-
ware chain is in the loop and thus the results are at
least qualitatively reliable. Regarding any quantita-
tive interpretation, again hardware specifics are the
limitation though comparisons of course hold valid.

Once again, for each kernel version, jitter tests
were run for the RT PREEMPT configuration set-
tings. These tests consisted in running the par-
allel port toggling thread under ’moderate’ system
load: we run ’make -j4’ on a kernel, untar’ed an-
other gziped kernel archive on another console while
executing ’find /’ on a fourth console. These jit-
ter diagrams are then contrasted with those acquired
by running the same program under RTLinux/GPL,
RTAI and LXRT. However, we decided to be ’un-
kind’ to the interrupt abstraction techniques and run
them under relatively heavy system load (dubbed,
stress test)[12]. Jitter measurements were acquired
by connecting an oscilloscope to an output pin of
the parellel port (figure 1 below). A Tektronix TDS
2014B Digital Storage Oscilloscope with a USB Flash
Drive storage facility was used for the acquisition of
the jitter patterns. The Oscilloscope’s display was
set to mode ’Persist’ at ’Infite’ value. The acquired
images were then downloaded to a USB Flash drive
and transferred to the a computer for further editing.

The PREEMPT( RT) jitter patterns were
recorded for several minutes only - this is of course
a systematic problem of our approach - but never-
theless the results are usable as an indication of the
overall performance of rt-preempt. However, the jit-
ter patterns for RTLinux, RTAI and LXRT were ac-
quired over several hours.

As a note on the kernel configuration settings:
CONFIG HIG RES TIMER was always set to true
(=y) for all settings.
For all CONFIG NO HZ, CONFIG HZ was set to
1000 as ( currently ) CONFIG NO HZ actually im-

3



plements the one shot timer.

FIGURE 1: A Tektronix TDS 2014B Dig-
ital storage scope attached to a VIA C3
600MHz fanless board

3 Results

3.1 LMbench Results

FIGURE 2: Local Communication: TCP -
latencies in us

FIGURE 3: File & VM system: 100fd selct
- latencies in us

FIGURE 4: File & VM system: Page fault
- latencies in us

FIGURE 5: Context switching times - la-
tencies in us

FIGURE 6: Local Communication: Mem
read - latencies in MB/s

4



FIGURE 7: Processes: sh proc - latencies
in us

FIGURE 8: Processes: null I/O - latencies
in us

3.2 Jitter Patterns

FIGURE 9: Jitter on 2.6.23-rc1 CON-
FIG PREEMPT NONE, VIA C3 600MHz

FIGURE 10: Jitter on 2.6.23-rc1 CON-
FIG PREEMPT NONE, P4

FIGURE 11: Jitter on 2.6.23-rc1 CON-
FIG PREEMPT, VIA C3 600MHz

FIGURE 12: Jitter on 2.6.23-rc1 CON-
FIG PREEMPT, P4

5



FIGURE 13: Jitter on 2.6.23-rc1-rt1
CONFIG PREEMPT RT, VIA C3 600MHz

FIGURE 14: Jitter on 2.6.23-rc1-rt1
CONFIG PREEMPT RT, VIA C3 1GHz

FIGURE 15: Jitter on 2.6.23-rc1-rt1
CONFIG PREEMPT RT, P4

FIGURE 16: Jitter on 2.6.22.1-rt6 CON-
FIG PREEMPT RT, VIA C3 600MHz

FIGURE 17: Jitter on 2.6.22.1-rt6 CON-
FIG PREEMPT RT, VIA C3 1GHz

FIGURE 18: Jitter on 2.6.22.1-rt6 CON-
FIG PREEMPT RT, P4

6



FIGURE 19: Jitter on 2.6.21.5-rt20 CON-
FIG PREEMPT RT, VIA C3 600MHz

FIGURE 20: Jitter on 2.6.21.5-rt20 CON-
FIG PREEMPT RT, VIA C3 1GHz

FIGURE 21: Jitter on 2.6.21.5-rt20 CON-
FIG PREEMPT RT, P4

FIGURE 22: Jitter on RTLinux v3.2-rc1

FIGURE 23: Jitter on RTAI v3.5

FIGURE 24: Jitter on LXRT (RTAI v3.5)

7



4 Discussion

4.1 LMbench Results

On average, it can be said that PREEMPT RT has
the most negative impact on the system albeit not
by significant margin. Its impact on general perfor-
mance of the system can clearly be seen from figures
2 and 4. While figures 3 and 8 also - less clearly
- reflect this, it is very difficult to judge its impact
from figures 6 and 7. Unlike results obtained (ear-
lier) from running tests against previous patched ker-
nel version e.g. 2.6.14-rt20, where the performance
of these kernels were significantly below that of the
unpatched versions, we see no significant differences
here. Apperently PREEMPT RT has no significant
degrading impact on the general performance of the
system in its current version.

4.2 Jitter Patterns

The main objective here was to access determin-
ism of scheduling of PREEMPT( RT) and contrast
results with those obtained by running RTLinux,
RTAI/LXRT. We wanted to scope how well an rt
thread could react to an event; how well it could
”time stamp” the event. The jitter here would serve
as an indicator of how strong other tasks in the over-
all system affect the determinism of the real time
thread - how deterministically the system could con-
trol an external signal.

As can be seen from figures 9 and 10 i.e. 2.6.23-
rc1 with CONFIG- PREEMPT NONE on a VIA C3
600MHz and a P4 2.8GHz, we can’t even begin think-
ing of any hard realtime - take note of the time
scales involved and how things even get worse on
the low end VIA C3 600 MHz board; the best our
rt thread (that demanded scheduling at 50us) could
get scheduled on the P4 at 1ms while on the VIA
600MHz, 2ms. Fig 11 and 12 show jitter on a VIA
C3 600MHz and a P4 2.8GHz, respectively, with
CONFIG PREEMPT on 2.6.23-rc1. We see some
improvement in preemptiveness but still things dont
even come close to any hard real time (P4 still giving
1ms and VIA C3 600MHz still at 2ms). Now, with
PREEMPT RT enabled, we see a dramatic improve-
ment in schedubility of the real time threads - figures
13 - 21. We now approach the 50us - even with the
low end VIA boards. Note the general trend: The
faster the processor, the better the real time perfor-
mace: About 55 - 60us on the P4 2.8GHz, 70us on
the VIA C3 1GHz and 80us on the VIA C3 600MHz
board as illustrated below.

FIGURE 25: Scheduling times on P4
2.8GHz and VIA 1GHz, 600MHz for an rt
thread demanding 50us

Now, even though we don’t hit the 50us mark
with precision i.e. we have some visible scheduler la-
tency - and though we can’t talk of hard real-time
here in the strict sense of the word - we definitely see
a tremendous reduction in jitter along with signifi-
cant improvement in schedubility. Moreover, better
real time performance can be achieved with relaxed
timming constraints. However, we can’t guarantee
worst cases here. ”Guarantee” in the sense that it
is simply not posible to test all control paths in a
real time application might take and also due to the
overall complexity of the the implementation.

The rt.wiki recommends usage of ACPI for ker-
nels above 2.6.18. However, we didn’t see significant
change in performance with this option enabled on
these architectures.

With the interrupt abstraction techniques, , fig-
ures 22 - 24, we actually strike 50us with some seri-
ous precision. The maximun jitter about this mark
is somewhat symmetrical for all and can actually be
determined unlike with RT PREEMPT. This is true
hard real time in the sense of guaranteed worst case
execution delays. The table below summarises worst
case jitter for PREEMPT RT versus its interrupt ab-
straction homies.

8



FIGURE 26: Table showing worst case jit-
ter for PREEMPT RT, RTLinux, RTAI and
LXRT

*Now, due to PREEMPT RT’s implmentation, mad
glitches in jitter can occur at any time e.g. fig 21. The
(PREEMPT RT) results displayed above are not meant
to be conclusive but rather serve as an indicator of the
effect of PREEMP RT.

5 Conclusion and Future Work

As per the results obtained from running LMbench
against the above mentioned kernels, each with differ-
ent configuration settings, we see no significant impact of
PREEMPT RT on the general performance of the system
unlike the preempt patches of earlier kernel versions.

PREEMPT RT significantly improves preemptive-
ness in Linux. Though we may not -yet - speak
of deterministic behaviour or guarantee worst case as
with its interrupt abstraction (RTLinux, RTAI, L4-
Fiasco, Xenomai, XtratuM etc) counterparts it does

bring some significant real-time to Linux. From the
jitter images above, we could say that PREEMPT RT
is not ”definitely unsuitable”, but we are not claiming
suitability. However, CONFIG PREEMPT and CON-
FIG PREEMPT VOLUNTARY are definitely not suit-
able for hard real time.

As for future work, we need fix systematic problems
with the above approach before extending to further ar-
chitectures. Though it should be noted that the restric-
tions of test run times is also due to the large number of
configurations that were to be tested, reducting these will
most likely be necessary in future runs. A comparison of
other results with other benchmarks (AIM 7, bonny++)
etc, and posibly application sector specific benchmark
suits would be a necessary extension.

References

[1] http://www.linuxdevices.com/articles/
AT7005360270.html

[2] http://www.linuxdevices.com/articles/
AT8211887833.html

[3] http://www.linuxdevices.com/articles/
AT7554348551.html

[4] Victor Yodaiken, RTLinux Manifesto, 1999

[5] https://www.rtai.org

[6] http://os.inf.tu-dresden.de/fiasco

[7] http://home.gna.org/adeos/

[8] http://www.xenomai.org

[9] http://www.linuxdevices.com/articles/
AT7554348551.html

[10] http://rt.wiki.kernel.org/index.php/
CONFIG PREEMPT RT Patch

[11] http://rt.wiki.kernel.org/index.php/
High resolution timers

[12] http://www.captain.at/howto-linux-
real-time-patch.php

9


