Real-time Kernel Implantation
In a PIC Microcontroller

Yves Gréalou, Pierre Guéant,
Wilfried Jouve, Mickael Le Baillif

ENSEIRB 2004

1. Introduction

Project goals
Displaying temperatures in real time
Real time specifications




Salvo

Cooperative, event-driven, priority based
multitasking RTOS

Designed for processors with severely limited
RAM

Events allowed include semaphores, messages
and message queues

Tests Procedure

Documents
reading

LED blinking

active loop
switching the state

handling output pins

Button + LED

pushing the button changes
the state of the LED

interrupts

LCD Display

Constant message
displayed

LCD control

Ther mal sensors

initializations, conversions,
decoding, printing

comm. with peripherals

Salvo tests




Implementation Design

Listing of required functionalities
Adaptation with Salvo possibilities

Functions grouped within 3 tasks,
synchronization using 1 semaphore

Task priority analysis

Electronic Board

Resof bution Interruption button
Programmingiworking mode switch

PC.Link
Analogical sensor B

Digital sensor
(D51620]

LLD screamyn™
|218)

=]




2. Programming strategy

ENSEIRB 2004

2.1.Initial Tests

LED: dedicated pin, register, macro

Button: interrupt handler, led-shift, bounce-
phenomenon

LCD: library |
LM35 Analogical Sensor: read and display |
DS1620 Digital Sensor: read and display |




LM35 Analogical Sensor Library

void Im35_init() Initialization

ul6 lcd_readtemp() Read current analogical
temperature

LCD Library

lcd_init() Initialization

lcd clear() Clear the display

lcd_pos(l, c) Position the cursor

lcd puts("message”) Display the "message*” at the
cursor location




DS1620 Digital Sensor Library

void ds1620 init() Initialization

void ds1620 start() Start a new conversion

ulé ds1620 readtemp() Read current temperature

2.2.Description of the Tasks

Display Task
Function print()
Three print modes: CURRENT, MINI, MAXI
Temperatures Acquisition Task
Function acquisition()

Retrieves analogical and digital temperatures computed
by the sensors

LED Blinking Task

Function born_to_be alive ()
Switches the LED state




2.3.Choice of Priority (1)

Call to the scheduler : OS_YIELD, OS DELAY,
OS_WAITSEM, OSSIGNALSEM

Display Task : the highest priority task
Not a background task

Waits for the semaphore
LED Blinking Task

LED task establishes the rhythm of the display
Releases the semaphore

2.3.Choice of Priority (2)

Temperatures Acquisition Task

Acquisition task has to be a background task

Minimal and maximal temperatures
LED Blinking Task Priority > Temperatures Acquisition
Task Priority

If LED task priority lower => never be scheduled

Conclusion




Tasks progression

1 |Display task

LED Blinking 1ask

2
3

Acguisition task

LED stata

Semaphore value 0 §]

1125 Whit3em; Tha Rak waits for the semaphom

[2] 2S5 gnalSem(). Tra task releacas the samaphore p

(¥ 25 Yuesa|): Tne schedules chonse 3 new fash - CPU monopolzaton
[4) The lask Chesplays new Sat of EmMperEiuras

3. Development & Experimentation

ENSEIRB 2004




Development and Experimentation:
Details (1)

Interruption enabling
Problem: Start displaying the minimal temperature
Cause: Pending interrupt at startup

OSEI() reset global interrupt mask, INTE =1 allows
external interrupts

Solution: enabling interrupts before init_value()

Development and Experimentation:
Details (2)

-_ External Interrupt

Goal: changing the display mode

Pressing the button: call to the interrupt handler,
INTF=1

Bounce phenomenon avoidance

Right after a request for erasing extrema values,
no change in display mode




Software Explanation

Initialization of the Minimum Temperatures
0 = minimal value our system can compute
Temperatures cannot be initialized to 0

For unsigned variables, -1 = maximum value:
all bits are equal to 1

-1 not displayed: display mode set to current
temperatures at startup and reset

Difficulties and Trouble

Extended Pressure on the Button
Checking the interrupt flag INTF is not sufficient
Need to consider the button as a regular input
pin
Inverted state: O stands for pressed button, 1 for
released

Managed using a decremented counter = timeout




Development and Experimentation:
Details (3)

Variable Typing

Importance of used memory space programming
a PIC

Variable types used (e.g. u08) , signed or
unsigned, 8, 16, or 32 bits

Code optimization

Development and Experimentation:
Details (4)

Timer Interrupt Frequency
Critical in a real-time embedded kernel
Generated by an internal configurable timer

Scalable interrupt frequency: maximum division
= 4*1024 - minimum frequency = 1KHz

We have noticed frequencies as down as 15Hz
Variations even while the software was running!




4. Conclusion

ENSEIRB 2004




