

Implementation Design Listing of required functionalities Adaptation with Salvo possibilities Functions grouped within 3 tasks, synchronization using 1 semaphore Task priority analysis

LCD Library Icd_init() Initialization Icd_clear() Clear the display Icd_pos(I, c) Position the cursor Icd_puts("message") Display the "message" at the cursor location

DS1620 Digital Sensor Library

のはなったが	void ds1620_init()	Initialization
	void ds1620_start()	Start a new conversion
	u16 ds1620_readtemp()	Read current temperature

2.2.Description of the Tasks

Display Task

- Function print()
- Three print modes: CURRENT, MINI, MAXI
- Temperatures Acquisition Task
 - Function acquisition()
 - Retrieves analogical and digital temperatures computed by the sensors
- **LED Blinking Task**
 - Function born_to_be_alive()
 - Switches the LED state

2.3.Choice of Priority (1)

- Call to the scheduler : OS_YIELD, OS_DELAY,
 - OS_WAITSEM, OSSIGNALSEM
 - Display Task: the highest priority task
 - Not a background task
 - Waits for the semaphore
- LED Blinking Task
 - LED task establishes the rhythm of the display
 - Releases the semaphore

2.3. Choice of Priority (2)

- Temperatures Acquisition Task
 - Acquisition task has to be a background task
 - Minimal and maximal temperatures
 - LED Blinking Task Priority > Temperatures Acquisition Task Priority
 - If LED task priority lower => never be scheduled
- Conclusion

Display task LED task

Acquisition task

Development and Experimentation: Details (1)

- Interruption enabling
 - Problem: Start displaying the minimal temperature
 - Cause: Pending interrupt at startup
 - OSEi() reset global interrupt mask, INTE =1 allows external interrupts
 - Solution: enabling interrupts before init_value()

Development and Experimentation: Details (2)

- External Interrupt
 - Goal: changing the display mode
 - Pressing the button: call to the interrupt handler,
 - INTF=1
 - Bounce phenomenon avoidance
 - Right after a request for erasing extrema values, no change in display mode

Software Explanation

- Initialization of the Minimum Temperatures
 - 0 = minimal value our system can compute
 - Temperatures cannot be initialized to 0
 - For unsigned variables, -1 = maximum value: all bits are equal to 1
 - -1 not displayed: display mode set to current temperatures at startup and reset

Difficulties and Trouble

- Extended Pressure on the Button
 - Checking the interrupt flag INTF is not sufficient
 - Need to consider the button as a regular input pin
 - Inverted state: 0 stands for pressed button, 1 for released
 - Managed using a decremented counter = timeout

Development and Experimentation: Details (3)

- Variable Typing
 - Importance of used memory space programming a PIC
 - Variable types used (e.g. u08), signed or unsigned, 8, 16, or 32 bits
 - Code optimization

Development and Experimentation: Details (4)

- Timer Interrupt Frequency
 - Critical in a real-time embedded kernel
 - Generated by an internal configurable timer
 - Scalable interrupt frequency: maximum division
 - = 4*1024 → minimum frequency = 1KHz
 - We have noticed frequencies as down as 15Hz
 - Variations even while the software was running!

