
©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 1/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

Fourth Semester Project

Javacard
Technology

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 2/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

Summary

I Presentation of the project .. 3
1 Context.. 3
2 Abstract... 3

II Introduction... 4
III What is a Javacard .. 4

1 Advantages of Javacard .. 4
2 A single multifunction card .. 5
3 A modifiable/upgradeable card... 5
4 Not only a card.. 5
5 Data storage .. 5
6 Javacard : a subset of Java .. 6

IV Communication between card and terminal... 6
1 A communication protocol for every smart card.. 6
2 Use of APDU for Javacard ... 7
3 Format of APDUs ... 7

V Stages of the project.. 8
1 Configuration of the development kit... 8
2 Loading of an applet onto Javacard .. 9
3 Development of two new applets ... 10

VI Conclusion.. 11
APPENDIX 1 : an example of code which underlines the APDU structure 13
APPENDIX 2 : Javacard System Architecture... 14
APPENDIX 3 : Communication between Card and CAD - Use of JCManager 15
Bibliography ... 16

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 3/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

I Presentation of the project

1 Context

Within the framework of our S4 project framed by Mr. Kadionik, we dealt with a new
technology which simplifies the programmation of smart cards.
What Java programming technology gives to smart cards may make their current uses look
downright simple-minded. JavaCard technology -- the implementation of Java technology for
smart cards -- makes it possible to create and download new functions and services to cards,
although they are already in the hands of consumers. The JavaCard API (Application
Programming Interface) gives smart cards the ability to perform multiple functions, including
thoses not even thought of when the cards are issued. Also significant, Java Card technology
maintains the inherent security of Java technology. Therefore, Javacards are a safe way to
conduct consumer transactions over insecure networks like the Internet and public telephone
systems.

2 Abstract

The project was to study what Javacard technology could offer in terms of functions or
services for customers and firms.
The development kit of cards applications and interface between terminal host and card (of
the Telecommunication Department) is based on a subset of Java, JavaCard.
The project consisted in :

• Installing the development kit
• Getting acustomed with its use
• developing batch files converting the Java code into a format compatible with

Javacard
• developing some applications

Progressing in this project, the reasons why Javacard is such a promising technology were
understood.

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 4/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

II Introduction

Invented in 1974 by a French man, Roland Moreno, smart cards have now become a
widespread support to store information. The most common examples of this type of card are
credit cards, phone cards and cell phone SIM cards. It is no more than a plastic card with a
single chip. There are various types of chips: microprocessors with internal storage,
programmable chips and JavaCard which is easy to use. The connection with the terminal can
be done by a direct physical contact or by an electromagnetic field.

Smart cards are of course becoming increasingly technologically advanced and today, some
can execute a program on their microchips. The communication protocol between the card
and the terminal has been studied. In order to carry out the project, a Gemplus development
kit was used. This kit called gemxpresso includes a special card onto which executable codes
can be loaded and tested.

III What is a Javacard

1 Advantages of Javacard

Javacard is one of the latest additions to the world of information technology.
Javacards provide :

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 5/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

-data portability : . Although similar to current credit cards, Javacards can have many
different uses.

-security : - security between users (confidentiality): As an access-control device,
javacards make personal and business data available only to the appropriate users.

- security between applications.
-flexibility
-compatibility with existing standards (Europay/MasterCard/Visa/SIM cards)

2 A single multifunction card

Not only can a card be programmed for many different types of applications, but more than
one application can be loaded onto a card. In javacards, each application code and its data is
protected and cannot be accessed by other applications. Thus, a javacard can be used for
commercial transactions as well as for storing personal records (for instance: one’s medical
records), and much more. This is all the more valuable in an emergency situation, when one
might not be physically able to communicate with a medical personnel : a single
mutlifunction card is necessary.

In Java terminology these applications are said to run in their own "sandbox".

3 A modifiable/upgradeable card

In addition, javacards can be reprogrammed. This is an important advantage for the further
development of smart cards as well as for industry. Hence, such an advance may allow smart
cards to be omnipresent in people’s future lives.

4 Not only a card

In Javacards, the microprocessor can run programs, process incomming and outgoing data
(I/O), and store data as a computer does. But, because unlike computers, it has no user
friendly Input/Output system, a Javacard works in tandem with a Card Acceptance Device
(CAD), namely, a card reader or terminal. Both of these device types have slots into which a
card is inserted. Card readers are connected to computers; terminals are themselves
computers.

5 Data storage

As a computing device, smart cards currently have limited resources. A typical javacard has
an 8-bit processor, 8 KB of ROM (Read-only Memory), 8 KB of EEPROM (Electrical
Erasable Programmable Read Only Memory), and 128 bytes of RAM (Random Access
Memory). A JavaCard application is called applet and is identified by a single identifier (AID
= Application IDentifier) definied by the ISO7816 standard. It creates the objects in a
EEPROM to keep information in a persistent way. Thus, data is saved and not lost when the
card leaves the terminal (reader). Safety is directly integrated into the level of the operating

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 6/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

system. Each application has its own memory zone, which ensures the safety between the
various applications and delimits the applications (delimitation necessary for maintenance
because each applications can concern a different company). Thus, the different applications
onto the card can’t take data of an other application.

6 Javacard : a subset of Java

There are differences between Java itself and Java Card. Smart card applications, for instance,
contain fairly basic functions, so, supporting multiple threads is not essential and would take
up a lot of unnecessarily space (the subset of Java : Javacard does not need to contain the
thread package). Current implementations of the JCVM (JavaCard Virtual Machine) (see
appendix 3) use specialized bytecode instructions. The specific bytecodes are not yet specified
so there is currently only source-code compatibility. This is likely to change in the near future.
The JCVM bytecode set contains full support for smaller, primitive types, such as shorts.
However, it does not support char, double, float, long, or arrays of more than one dimension.
Thus, there are some programming constraints: using constants instead of variables
(static,final), re-using the variables as far as possible, keeping a simple hierarchy of classes.
(see appendix 2).

IV Communication between card and terminal

1 A communication protocol for every smart card

A smart card is inserted into a Card Acceptance Device (CAD), which may connect to another
computer. It provides a basic function, namely to supply the card with power and to establish
a data-carrying connection.

When two computers communicate with each other, they exchange data packages, which are
constructed following a set of protocols. Similarly, smart cards communicate with the outside
world using their own data packages -- called APDU (Application Protocol Data Units).

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 7/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

Thus, APDUs are packets of data that are exchanged between the CAD and a smart card.
APDUs are the standard means of communication for smart cards. There are two types:
command APDUs which specify an operation to be performed by a smart card; and response
APDUs which contain the smart card's reply (status and, optionally, data) to an operational
request. Java Card technology is modeled on a smart card specification standard, ISO7816.
This standard specifies that communication between a host application and a smart card is
done through APDUs. An APDU is a packet of data that follows a specific format :

• A command APDU starts with a header and is optionally followed by a body. The
header contains fields that specify the operation to be performed by a smart card. The
body includes any data that accompaniates the request; it also indicates the maximum
number of data bytes expected in response to the command.

• A response APDU optionally begins with a body that contains any data returned in
response. The response APDU ends with two mandatory bytes that specify the
processing state of the card.

2 Use of APDU for Javacard

In Javacard technology, the host application sends a command APDU, and a Java Card applet
responds with a response APDU. In fact, a Java Card applet remains idle until it receives a
command APDU. However the communication is not directly ‘host application’ to ‘Java Card
applet’. Instead the JCRE acts as a stub. The command APDU is transmitted to the JCRE,
which sends it to the appropriate Java Card applet for processing. After processing the APDU,
the Java Card applet transmits a response APDU to the JCRE, which sends it to the host
application.

3 Format of APDUs

The following tables illustrate command and response APDU formats respectively. APDU
structure is described in ISO 7816, part 4.

Command APDU

Mandatory Header Conditional Body

CLA INS P1 P2 Lc Data field Le

Figure 1 : Command APDU

The header codes the selected command. It consists of four fields: class (CLA), instruction
(INS), and parameters 1 and 2 (P1 and P2). Each field contains 1 byte:

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 8/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

• CLA: Class byte. In many smart cards, this byte is used to identify an application.

• INS: Instruction byte. This byte indicates the instruction code.

• P1-P2: Parameter bytes. These provide further information for the APDU command.

Lc denotes the number of bytes in the data field of the command APDU; Le denotes the
maximum number of bytes expected in the data field of the following response APDU.

Response APDU

Conditional Body Mandatory Trailer

Data field SW1 SW2

Figure 2 : APDU response

Status bytes SW1 and SW2 denote the processing status of the command APDU in a card.

V Stages of the project

1 Configuration of the development kit

The first step was to install the kit Gemxpresso RAD 211 on Windows 95 OS. The kit was
made up of a terminal GC410,an installation CD-ROM and two Javacards.
In order to load an applet and communicate with a Javacard, what is needed is :

• The JDK (Java Development Kit) platform : JDK 1.2.2
• The files and libraries in order to convert the.java files
• The JcardManager which enables us to send the APDU command. (see

appendix 3)
• The Comm API which provides the communication between the parallel and

serie port for the JDK.

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik 9/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

• The OpenCard Framework which provides the interface between the customer
applications and the card (provided with the CD-ROM)

2 Loading of an applet onto Javacard

There is already an applet in the development kit. This second stage consists in loading this
applet onto Javacard. This stage was the most important of the project. Indeed, first of all, the
running of the kit has to be understood in order to adapt the batch files which convert the .java
files into a compatible format (.jca, .exp, .jar, see figure : loding an applet).

There are four steps involved in the Java Card development process:

1. Applications can be compiled using any standard Java development environment, such
as JDK.

2. Because Java Card defines a subset of Java, one must check that only features
supported by Java Card are present. This step is called "verification."

3. After verification, the code is in JVM bytecode format, but needs to be converted to
JCVM bytecode. This step is called "conversion."

4. After conversion, the code is ready to be loaded onto the card. Nowadays, there is no
standardized file format for loading; however, one is in process of being.

 1 2 3 4
Figure 3 : Loading an applet

1 : compilation by JDK
2 : convertion of the file.class in two files (.jca and .exp)
3 : compression of the file.jca into a file.jar
4 : loading with JCardManager

Loading with Jcard Manager :

Jcard Manager is a Graphic User Interface (GUI). With JcardManager, the Javacard is
authenticated with the file card.properties and by choosing the authentification command.
Then the command “Upload JAR file into a card” has to be chosen. After words, the AID of
the applet and that of the package have to be set. The AID of the security field, which is that
of CardManager here, can be specified. Lastly, the Jar file has so that it can be selected to be
loaded.

Loading the applet with batch files (RunGSE then UploadGSE) is also possible.

App.java App.class App.jca
App.exp

App.jar

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
10/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

3 Development of two new applets

First of all, every application which has already been developed in smart cards will be adapted
to Javacard. That is why we have chosen to develop two kinds of applications: a pointer
(Pointeuse program) and a virtual fly ticket (Reservation program). The structure of the
OPPurse.java code and some parts of OPPurse applet have been kept : those concerning the
authentification, the security, the select and the reset of the applet.
In the pointer applet, the different APDUs made when the user put his card in the reader are :

• APDU 0:credit which saves and modifies the variables in function of at what time the
card is inserted in the reader

• APDU 1 : get-hour which gives the engaging hour
• APDU 2 : get-maxnumberhourstodo which gives the number of hours to be done in

the week
• APDU 3 : get lastnumberhoursdone which gives how many hours the user has worked

in the last day
• APDU 4: get numberhoursdone which gives how many hours the user has worked

since the beginning of the week
• APDU 5 : getnumberhourstodo which gives the number of hours that remain to be

done in the week

The aim of this reservation applet is to store and then retrieve information about a fly
reservation.
With this applet, we can have an access to a lot of data and modify some of it.

• APDU 0: sets the area of departure and arrival
• APDU 1: sets the time of departure and arrival
• APDU 2: gets the passenger flight class
• APDU 3: gets the cost of the flight
• APDU 4: delays the time of departure
• APDU 5: gets the area of departure and arrival
• APDU 6: gets the time of departure and arrival

(see the appendix 1 : an example of code which underlines the structure of APDU)

Through these applications, we have seen that developing applications dedicated to Javacards
is all the more convenient than the language used is Java (universal language). Whereas the
actual development of applications in smart cards requiers accurate knowledge in the proper
language of card providers, Javacard technology makes it possible to develop applications on
one’s own. Moreover, as JCVM interprets the code before being loaded onto the card, the
mistakes are detected and can be corrected.

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
11/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

VI Conclusion

Java Card technology is under full development. Today, various firms such as
telecommunication operator which develop SIM card, firms which install advertisements in
the street, or firms which install soft drink distributors firms plan to use JavaCard technology.
Commercially speaking, there are a number of Java Card products on the market, including
Schlumberger's Cyberflex (http://www.cyberflex.slb.com) and Gemplus's GemXpresso (
http://www.gemplus.com/). Several other smart card vendors -- including Bull, Giesecke &
Devrient, Motorola, and DeLaRue -- have announced plans to release Java Card. Furthermore,
companies such as IBM, Informix, Oracle, and Visa International have endorsed the Java
Card specification. Within 10 years, Java Card is likely to become a systematically used
standard. Javacard development sets the tendency for the general use of Java in many fields

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
12/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

(cf the monthly Programmez mai 2003 n°53 et J2ME : http://java.sun.com/j2me/docs).
However, even if Java has an advantage due to its low consumption of resources, a more
sophisticated system still needs to be developed to allow a greater number of possible
applications. Whithin the framework of Javacard, developers can design applications either in
the terminal but also in the chip of the card for more portability. This is what is likely to
propell Javacard technology in up and comming years.

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
13/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

APPENDIX 1 : an example of code which underlines the APDU
structure

Applet

Commands

public class Pointeuse extends javacard.framework.Applet

{
private final static byte INS_GET_HOUR = (byte)0x30;
....
public void process(APDU apdu) throws ISOException
{

byte[] apduBuffer = apdu.getBuffer();
switch(apduBuffer[ISO7816.OFFSET_INS])
{

case INS_GET_HOUR :
gethour(apdu);
......

}
}
private void gethour(APDU apdu)
{
//get the APDU buffer
byte[] apduBuffer=apdu.getBuffer();
//write the hour into the apdubuffer after the APDU command part
apduBuffer[5]=(byte)(hour>>8);
apduBuffer[6]=(byte)hour;
apdu.setOutgoing();
apdu.setOutgoingLength((short)2);
apdu.sendBytes((short)5,(short)2);

}

AID Name

Name CLA INS Lc Arguments

Name
Position

 Length

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
14/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

APPENDIX 2 : Javacard System Architecture

Software components for the smart cards in technology Java :

COS OS of the Java card

Native service Provide the service of cryptogrphie, allowance of the
memory, inputs/outputs.

Java Card Virtuelle
Machine (JCVM)

VM allows the execution of the Java byte-code, and the
management of the exceptions

Framework Together classes constituting the API one. Management of
atomicity, selection of the applet, installation and the APDU.

JCRE The « JavaCard Runtime Environment » : JavaCard Virtuel
Machine (JCVM), Framework, natives functions, API.

Javacard System Architecture :

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
15/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

APPENDIX 3 : Communication between Card and CAD - Use of
JCManager

©ENSEIRB 2003 TELECOMS 2ND YEAR

TEACHER : M. Kadionik
16/16
GROUPE 1 : Maury P. ; Nguyen R. ; Sabri Y. ; Grolleau J.

Bibliography

Gemplus development Kit Documentation

Developer web sites :
Gemplus web site : http://www.gemplus.com
Schlumberger's Cyberflex web site : http://www.cyberflex.slb.com

Forum :
Java Card Special Interrest Group : http://www.javacard.org
Gemplus javacard team : javacardteam@gemplus.fr

Javacard standard :
http://java.com.sun/product/javacard

Java (J2ME) :
the monthly Programmez mai 2003 n°53
J2ME documentation : http://java.sun.com/j2me/docs

