
Applications Note

HDL Simulation FPGA Design Methodology

October 15, 1998

Revision 1.0

OVERVIEW.. 3

MODEL TECHNOLOGY , EXEMPLAR & XILINX TOOLFLOW OVERVIEW.. 3

SYNTHESIS PROCESS DESIGN FLOW... 4

EXAMPLE SESSION .. 5

Example ModelSim RTL Simulation Session... 5
Example Leonardo Session... 6
Example Alliance Series Place and Route Session.. 7
Example ModelSim Gate-Level Simulation (with SDF) Session.. 13

Overview

ModelSim performs pre-synthesis RTL simulation and post-place and route gate-level timing simulation
with SDF backannotation of timing. Leonardo performs architecture specific synthesis and optimization
for all Xilinx devices. Xilinx Alliance Series performs placement and routing of the synthesized netlist.
This applications note discusses methodology and optimization settings for Leonardo, Alliance Series and
ModelSim when targeting Xilinx devices. The intent of this appnote is not to exhaustively explore all the
different options in the Leonardo, Alliance Series and ModelSim toolsets but to present a single
methodology that works. For information beyond the scope of this document, refer to the following web
pages:

www.exemplar.com Exemplar Logic
www.model.com Model Technology
www.xilinx.com Xilinx

When targeting Xilinx devices, Leonardo will map the design into Xilinx lookup tables. Both Galileo
Extreme and Alliance Series offer configuration options that dictate how this mapping takes place. In some
cases both tools can perform the same functions but, as we'll see, with different results.

The Alliance Series allows the creation of VHDL or Verilog of the placed and routed design along with
timing information in a SDF file. This gate-level timing design can then be compiled (along with the
Xilinx SIMPRIM library) and simulated in ModelSim.

Model Technology , Exemplar & Xilinx Toolflow Overview

RTL Creation

RTL
Simulation

RTL
Synthesis

Place and
Route

Functional
Gate Level
Simulation

SDF Gate
Level

Simulation

Static Timing
Analysis

Renoir MTI ModelSim Leonardo Xilinx M1

RTL VHDL

VITAL

EDIF

VHDL & SDF

VHDL & SDF

Synthesis Process Design Flow

Compile RTL
Design

Simulate the
RTL Design

Model Technology Environment

Invoke Leonardo

Load 4K Library

Load 4K
Modgen Library

Read HDL
Design

Flatten
Hierarchy

Perform
Optimization

Save Netlist

Configure M1
Design

Enviornment

Place and Route

Save Netlist

Xilinx Design
Environment

% leonardo

load_library xi4xl

load_modgen xi4e

read bottom.vhd middle.vhd top.vhd

ungroup -all -hierarchy

optimize -ta xi4 -area

auto_write edif.out

Leonardo Commands

Compile Xilinx
SimPrim Library

Apply SDF
Timing

Model Technology Environment
Compile Gate-
Level Design

Simulate the
Gate-Level Design

Example Session

Example ModelSim RTL Simulation Session
This section describes the basic steps to compiling and simulating the pre-synthesis RTL
design. It is in this step that the functionality of the design is verified prior to synthesis.

1) Invoke ModelSim

% vsim -or- Programs > Model Tech > ModelSim

2) Set ModelSim to the directory where the RTL design resides.

ModelSim> cd c:\mydesign -or- File > Directory

3) Create a working library to store the compiled RTL design.

ModelSim> vlib work -or- Library > New

4) Compile the RTL design.

ModelSim> vcom bottom.vhd middle.vhd top.vhd

-or- VCOM button

5) Start the ModelSim simulator.

ModelSim> vsim top -or- VSIM button

6) View all the ModelSim debugging windows.

VSIM> view * -or- View > All

7) Wave and list signals of interest in the design.

VSIM> wave /* -- Adds all top level signals to the wave window
VSIM> list /* -- Adds all top level signals to the list window

8) Unless you have a VHDL testbench which stimulates the RTL design, you will need to
force the inputs of the RTL design.

VSIM> force /clk 0 @ 0 ns, 1 @ 50 ns –repeat 100 ns
VSIM> force /input 0

9) Run the simulation and analyze the information in the ModelSim debugging windows.

VSIM> run –all -or- Run > Run Forever

Example Leonardo Session
This section provides a detailed example of using Leonardo with the Xilinx Alliance Series
toolset targeting the XC4000XL device family. All commands are easily accessible via the
toolbar, pulldown menus or the Xilinx specific flow guide. This example will demonstrate
Leonardo shell commands.

10) Invoke leonardo

% leonardo

LEONARDO{1}

11) Load the Xilinx xi4e library. This will load cell data only

LEONARDO{1} load_library xi4xl

12) Load the Xilinx Modgen library. Modgen is a library of handcrafted implementations
for all the inferred design elements. This includes operators, RAMs and counters.
There are typically multiple architectures for each element. If this library is not loaded
Leonardo will use a generic Modgen library which will not be able to take advantage of
Xilinx specific cells.

LEONARDO{2} load_modgen xi4e

13) Read in the HDL files. VHDL design files must be listed in their bottom-up order.
Verilog users enjoy "auto-top detection" which means that Leonardo will automatically
detect the top-level module from files listed in any order.

Note: Leonardo uses file suffixes to figure out file formats; VHDL files = .vhd, .vhdl; Verilog files
= .v, .ver; EDIF files = .edn, .edf, .edif.

LEONARDO{3} read bottom.vhd middle.vhd top.vhd

14) Flatten the design. Hierarchical boundaries prevent or limit important optimizations
from occuring. Sometimes there are good reasons to preserve hierarchy, i.e., design
size or to separate out speed critical blocks. Only a minimum of hierarchy should be
kept. It is recommended to have no more than 50K gates per hierarchical block.

LEONARDO{4} ungroup -all -hierarchy

15) Perform optimization. Leonardo can perform both area and timing optimization. In
this example we will be performing optimization to achieve the smallest design.
Additionally, the effort level can be specified. Quick performs 1 pass and standard
performs 4 passes and will take 4 times longer to complete.

LEONARDO{5} optimize -ta xi4e -area -effort quick

16) Generate area and timing reports. The optimization runs will display a single area and
worst case timing number. Reports are only necessary if more information is
required.

LEONARDO{6} report_area

LEONARDO{7} report_delay

17) Generate an EDIF netlist for Alliance Series. A Netlist pre-processor is built into
Leonardo. Because the Xilinx XC4000E technology is specified the correct netlist pre-
processing will take place.

Example Alliance Series Place and Route Session
The Xilinx graphical tools are designed to behave, look, and feel like the XACT 6.0 tools.
So despite the fact that the core technology algorithms have been redesigned, the
graphical tools allow users to run the software in the same way as previous PC versions.
For PC customers, the learning curve should be short.

The Design Manger (DM) is the graphical tool that manages the design files that are
created during design implementation. The DM also provides push button access to the
following Xilinx tools: Flow Engine, Prom File Formatter, Timing Analyzer, Hardware
Debugger, and JTAG Programmer.

Start the Design Manager from the Windows 95 or NT desktop by executing the
command:

Selecting Start > Programs > Xilinx > Design Manager

From a shell invoke Design Manager by typing:

dsgnmgr

1) Create a New Project in Alliance Series. From the Design Manager toolbar, execute
the pulldown menu command

FILE > New Project

Push the "input design" button and navigate to the EDIF file generated by Leonardo.
This file should have the extension, ".edn".

2) Perform "Implement" on the design. From the pulldown menu, execute the command,

Design > Implement

§ Select a specific Xilinx part
§ Push the Select button. In the “Part Selector” dialog and choose the

appropriate member, speed and package combination from those available
for the XC4000XV family

Note: If the Leonardo command, "generate_timespec" is issued after optimization and before
saving the EDIF netlist then clock frequency timing data is included in the EDIF netlist.

3) Click "OK, but do not hit "Run" on the Implement dialog box

Note: The first step in implementing a design is the selection of a target device. If a valid PART
has been specified in Leonardo, it will be pre-selected in the Part selection dialog box. For
designs that do not have the PART specified in the netlist (or the Design Manager is unable to
detect its presence), the user must identify the target part using this dialog box. Users may
define the part in Leonardo by setting the "part" variable, i.e., "set part xc4005xl-3-PC84".
Setting the part variable is a step of convenience and will not effect optimization results

Note: The family
specified in Alliance
Series must match
the family specified
in Leonardo

Setup Alliance Series to generate VITAL VHDL Simulation Model
1) From the Implement dialog box select the "Options" button. This will bring

up the "Options" dialog box.

2) In the "Optional Targets" field, check the box labeled, "Produce
Timing Simulation Data"

3) In the "Program Option Templates" field, select the "Edit Template" button
for "Implementation". This will bring up the "XC4000 Implementation Options:
Default" dialog box.

4) Once up Select the "Interface" tab and Set the simulation data output to
"VHDL"

5) "OK" all the dialog boxes

Run the "Implement" Command
To launch the implementation process, in the “Implement” dialog, push the "Run"
button. This will cause the "Flow Engine" graphical interface to appear. The design
is now processed through a 5 step sequence.

Notice the arrow buttons on the bottom of the window. These look like CD
Player buttons and provide a similar function.

An "Implement" run can be stopped after any step by hitting the "Stop" button
which appears in the form of a stop sign

Run a step Advance to
next step

Backup to
previous step

Stop

Review the Alliance Series "Implement" Results
Once the Flow Engine has completed the “Implement” process, the “Implement
Status” dialog box is posted. To review the processing which has occurred,
review the log file. In the “Implement Status” dialog box, push the “View Logfile”
button that will bring up the "Report Browser". Any report can be quickly viewed
with a simple "double click" of the mouse

Example ModelSim Gate-Level Simulation (with SDF) Session
This section describes the basic steps to compiling and simulating the post-synthesis/post-
place&route gate-level design with SDF timing back annotation.

1) Invoke ModelSim

% vsim -or- Programs > Model Tech > ModelSim

2) Set ModelSim to the directory that contains the gate-level VHDL netlist (from Xilinx
Design Manager).

ModelSim> cd c:\mygatedesign -or- File > Directory

3) Create a working library to store the compiled design.

ModelSim> vlib work -or- Library > New

4) Create a Simprim library to store the compiled Xilinx Simprim packages.

ModelSim> vlib simprim_lib -or- Library > New

Note: A separate library is not required for the Simprim packages. You could compile them into
your work directory. If you did this, you would map the simprim library to work instead of
simprim_lib as is shown in the next step.

5) Map the Library name “simprim” to the library simprim_lib that was just created. This
will allow ModelSim to know where to look when it encounters a “library SIMPRIM;”
statement in the VHDL design.

ModelSim> vmap simprim simprim_lib

6) Compile the Simprim packages into the simprim_lib library.

ModelSim> vcom -work simprim –explicit \
 <Xilinx dir>\vhdl\src\simprims\simprim_Vpackage.vhd

ModelSim> vcom -work simprim –explicit \
 <Xilinx dir>\vhdl\src\simprims\simprim_VITAL.vhd

ModelSim> vcom -work simprim –explicit \
 <Xilinx dir>\vhdl\src\simprims\simprim_Vcomponents.vhd

This step is easier using the ModelSim VCOM button which brings up the following
dialog. Make sure you compile in the proper order (Vpackage, VITAL, Vcomponents).
Note the Target Library setting of simprim instead of work.

7) Compile the VHDL netlist created by the Xilinx Design Manager.

ModelSim> vcom time_sim.vhd -or- VCOM button

Note: The place and routed time_sim.vhd gate-level design uses the IEEE & SIMPRIM VHDL
libraries. The IEEE library comes pre-built in the ModelSim simulator. The SIMPRIM library was
built in step 6 above. If the SIMPRIM libraries were not successfully compiled or if the library
name SIMPRIM was not properly mapped to the SIMPRIM_LIB library above in step 5, then the
ModelSim compiler would issue error messages complaining about “Library simprim not found.”

8) Start the ModelSim simulator applying the sdf information in the file tim_sim.sdf to the
root level of the design (/).

ModelSim> vsim –sdftyp /=time_sim.sdf top

Or use the ModelSim VSIM button to start the simulator and apply the SDF info:

9) View all the ModelSim debugging windows.

VSIM> view * -or- View > All

10) Wave and list signals of interest in the design.

VSIM> wave /* -- Adds all top level signals to the wave window
VSIM> list /* -- Adds all top level signals to the list window

11) As was done in the RTL simulation, either use a VHDL testbench to stimulate the RTL
design, or force the inputs directly in ModelSim.

VSIM> force /clk 0 @ 0 ns, 1 @ 50 ns –repeat 100 ns
VSIM> force /input 0

12) Run the simulation and analyze the information in the ModelSim debugging windows
to verify the results are the same as in the RTL simulation.

VSIM> run –all -or- Run > Run Forever

