
Embedded systems:

Nios II Software development

• Hardware generation process
– Platform designer to configure and

generate a NIOS II system

• Software creation process
– NIOS II software build tools for

Eclipse
– C/C++ compiler based on GNU

toolchain

Nios II system development flow

Platform designer

• Allows a digital system to be designed by
interconnecting selected components

• Interconnections are made through the
Avalon bus.

• Bus arbitration, bus width matching and
even clock domain crossing are all handle
automatically when generating the
system.

Nios II software build tools (SBT)

Software application project

HAL Board Support Package project

Nios II system development flow

Platform designer

(.vhd + .sopcinfo)
Nios II

Software build tools

Eextract system
information from the
SOPC information file
(.sopcinfo).

Generates hardware system

Generates a custom HAL
board support package
(BSP) specific to your
hardware configuration

(settings.bsp + system.h)

BSP Editor

(.elf)System.h:
Complete software description

of the NIOS II system

Hardware and Software development flow

Generate SW
programming file

Hardware Abstraction Layer (HAL)

• HAL must be based on a specific hardware system

• HAL library generation (Nios II):
– Platform designer generates a hardware system (.vhd + .sopcinfo)
– NIOS II software Build Tools (SBT) extract system information from the

SOPC information file (.sopcinfo).
– NIOS II Software Build Tools (SBT) generates a custom HAL board

support package (BSP) specific to your hardware configuration.
• System.h: Complete software description of the NIOS II system

– Changes in the hardware configuration automatically propagate to the
HAL device driver configuration when the BSP is re-generated.

• HAL device driver abstraction provides a clear distinction between
application and device driver software.
– Promotes reusable application code that is resistant to changes in the

underlying hardware.

SOPC: System On Programmable Chip

Nios II HAL
• Lightweight embedded runtime

environment that provides a simple
device driver interface for programs
to connect to the underlying
hardware.

• NIOS II HAL application program
interface (API) is integrated with the
newlib ANSI C standard library.

• Newlib intended for use with
embedded system that lack any kind
of operating system.
– Use HW independent parts of the

standard C-library
– Rely on calls to Board Support Package

(BSP) for HW specific information

• HAL allows to access devices and
files using familiar C library functions
such as e.g. printf()

Newlib: https://sourceware.org/newlib/

Chap 6-8 in Nios II Software developer’s handbook:
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2gen2.pdf

https://sourceware.org/newlib/
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2gen2.pdf

BSP Editor

HAL settings are reflected in the system.h file

NIOS II SW Development

• Each NIOS II program consists of:
– an application project,
– optional user library projects, and
– a board support package (BSP) project

• The build process creates an
Executable and Linking Format File
(.elf) which runs on a NIOS II
processor

#include <system.h>

• Provides a complete software description of the
NIOS II system hardware

• Describes each peripheral in the system
– The hardware configuration of peripheral
– The base address
– Interrupt request (IRQ) information (if any)
– A symbolic name for the peripheral

• NIOS II SBT generates system.h file for HAL BSP
projects

• Do not edit system.h !!

Ex. from a system.h

Nios II hardware development

Accessing HAL peripherals

Useful HAL macros

#include <io.h>
• Provides C language macros IORD and IOWR
• Enables HAL device drivers to access hardware registers
• Components can easily be moved to different address areas

without changing the software

• IORD() / IOWR()
– Offset is the word offset of the register
– Word size assumed to be 32-bit so offsets 0,1,2,3 etc,

maps to byte offsets 0,4,8,12

• IORD_xxDIRECT() / IOWR_xxDIRECT()
– Data size oriented
– Offset is in bytes and choice of macro dictates the

width of the access.
– Can be used to access slave ports that contains byte

enables and has multiple values stored in a single
wide register

#include <io.h>

HAL macros

3 2 1 0

7 6 5 4

IORD (BASE, 0x1);

3 2 1 0

7 6 5 4

IORD_32DIRECT (BASE, 0x4);

3 2 1 0

7 6 5 4

IORD_16DIRECT(BASE, 0x2);

3 2 1 0

7 6 5 4

IORD_8DIRECT(BASE, 0x7);

Word
oriented

byte
oriented

HAL Peripherals
• All peripherals must have a header file that defines the peripheral’s low-

level interface to hardware

• Therefore, all peripherals support the HAL to some extent

• However, some peripherals might not provide device drivers

• If drivers are not available, use only the definitions provided in the header
files to access the hardware

• Some peripherals provide functions that are not based on the HAL generic
device models
– For example, Altera provides a general-purpose parallel I/O (PIO) core for use

with the NIOS II processor system
– The PIO peripheral does not fit in any class of generic device models provided

by the HAL, and so it provides a header file and a few dedicated functions only
– User pushbuttons and LEDs are examples of these

PIO macros in
altera_avalon_pio_regs.h

PIO register map

Source: http://www.altera.com/literature/ug/ug_embedded_ip.pdf

