Editor: Christof Ebert

0pen S0UrGE

Alcatel

christof.ebert@alcatel.com

Ilsing Linux for Real-Time
Applications

18

IEEE SOFTWARE

An open source column talking about Linux? Aren’t there enough such articles around?
Indeed, tons of information are available on Linux. But that’s not what we are presenting
here. We've selected a topic for practitioners in the embedded and real-time domains,
namely how to use Linux for real-time applications. The article is hands-on: it not only
summarizes selection criteria and introduction schemes for RTLinux but also shows how
Linux was actually integrated in an existing (legacy) architecture.

I look forward to hearing from you, both readers and prospective column authors, about
this column and the products and tools you want to know more about. If you’d like to
write for this column, see the author guidelines or contact me. —Christof Ebert

or small and medium-sized
businesses to stay competi-
tive, they need communica-
tion systems that offer not
only excellent telephone ser-
vice but also Internet and
data-handling capability. As a so-
lution to this problem, we at Alca-
tel have built a comprehensive e-
communication appliance called
OmniPCX Office, or OXO—a pre-
configured server integrating data, Internet,
and voice communication capabilities.! The
system offers a cost-effective voice solution in-
cluding IP telephony as well as secure, high-
speed, shared Internet access, built-in email,
security and control applications, and Inter-
net-based remote-access facilities. OXO has
been in the field for nearly three years.
Rather than using proprietary software to
support the OXO platform, we chose Linux
with an RTLinux extension. This column ex-
plains why we chose it and how OXO uses it,
focusing particularly on architecture and real-
time aspects.

Published by the IEEE Computer Society

Why Linux/RTLinux?

The ever-increasing complexity of devices
and systems, the ever-accelerating pressure for
a shorter time-to-market, and reduced devel-
opment costs necessitate using rich software
platforms. As we began to develop the OXO
system, it quickly became clear that our exist-
ing real-time, kernel-based infrastructure was
inadequate to support all the expected ser-
vices. We needed a standard, general-purpose
software platform such as Linux or Windows
to take advantage of the available applications.
With the exception of telephony, this would
cover most of the system’s requirements.

OXO belongs to the hard real-time systems
category; this means that whatever load stress
the system is experiencing, it must respond to
an event within a predefined time. For exam-
ple, low-level Integrated Services Digital Net-
work (ISDN) signaling protocols demand re-
sponses to inquiries within precise (and
generally very short) time limits.

Unfortunately, Linux and Windows can’t
handle hard real-time tasks; they can usually
respond to events within a predetermined time,

0740-7459/04/$20.00 © 2004 IEEE

but this isn’t always the case. The tech-
nical literature refers to this as soft real-
time. Linux experiences this phenome-
non for several reasons, mainly because it
can’t preempt certain kernel operations.

Getting the determinism you
need

There are several ways to make
Linux achieve the required level of de-
terminism. Some approaches involve
creating opportunities to run the sched-
uler more often, thereby minimizing the
delay between an event’s occurrence and
its processing.? Although this improves
the system’s responsiveness for inter-
rupts and tasks, Linux is still not hard
real-time; critical sections of code can
produce long latencies. Other ap-
proaches modify the system’s original
design in ways that jeopardize compat-
ibility with standard Linux and thus
with the existing applications base,
negating all expected benefits.

Another is the dual-kernel ap-
proach.? Think of this as a simple real-
time executable rather than a full-
blown operating system, in which the
lowest-priority task (in the executable
sense) is Linux as a whole (see Figure
1). The real-time executive takes con-
trol of the machine, mainly by inter-
cepting all the interrupts that Linux
normally handles; the system immedi-
ately services the interrupts that are
meant for real-time. The executive then
reassigns the interrupts to Linux only
after the system has processed the real-
time tasks. In this way, applications re-
quiring real-time processing (like man-
aging signaling protocols) can cohabit
with other, less demanding applications
(such as voice mail or Internet access)
on the same machine. Moreover, Linux
remains almost intact, thus offering
compatibility with the current and fu-
ture applications base.

There are, however, problems with
this approach. One issue is that real-time
tasks actually share Linux kernel space,
making debugging tricky. Another major
drawback is that real-time tasks can’t di-
rectly access Linux services, for the same
reasons that prohibit Linux processes
from behaving deterministically. If real-

Linux processes Hard real-time tasks
Non-real-time Soft real-time
SN g
Internet c;ﬂ\ g
access) Voice 2
over IP)
.
o —____ Low-level protocols
Linux 2)
Drivers | = ISDN! | Lines 3
T (%]
N Deferred int ! s
1 8
1/0 RTLinux \ 1/0
Nlnt i Int ‘
Hardware S LSP

Figure 1. The 0XO0 software is divided into three classes: non-real-time and
soft real-time Linux processes in user space and hard real-time tasks in
kernel space. The RTLinux executive shares the kernel space as well.

time tasks could use Linux services di-
rectly, they might preempt some of the
nonpreemptable operations I mentioned
earlier, leading to an unstable system.
This required us to design the system in
two separate (although collaborating)

worlds: “pure” real-time tasks with no
access to Linux services, and non-real-
time applications with full access to
Linux. Communication resources such
as shared memory or FIFOs allow inter-
changes between these two worlds.

Author Guidelines for Future Golumns

Select one open source software component, tool, product, or product group
that you've used. Focus on why you chose it, what its benefits are, how it con-
trasts with competing components (OSS or commercial off-the-shelf), and what
lessons learned might aid other practitioners. For your column to be useful, your
report must come from in-depth experience rather than a superficial, one-

weekend evaluation.

You may review a single tool or product (such as a GNU or Eclipse item) or
a vertical product group (such as defect-tracking tools, middleware, or work-

flow management tools).

Evaluate the OSS components in a concrete, fairly broad application context
and present the information in a neutral style. If authors follow a similar style,
readers will have easier access to the information.

Preferably, you are an OSS user rather than a primary author or key con-
tributor. Typically, authors don’t work for an independent software vendor or
packaging company. You can’t be zealous nor hostile toward OSS, as this
would bias the evaluation and reduce credibility.

Present feature comparisons of different OSS products and other data in

chart format, if possible.

Send your column proposal and author qualifications to Christof Ebert at

christof.ebert@alcatel.com.

September/October 2004 1EEE SOFTWARE 19

Gomparing Windows and Linux for
voice and data services

Service Windows + RT extension Linux + RT extension
Voice services Sufficient Good

Data plus Internet services Very good Very good

Software development environment Good Sufficient

Support Good Good

Costs (including hardward impact) High Low

Commercial extensions such as RTX
from Venturcom and InTime from
TenAsys can help enhance Windows so
that it can support hard real-time oper-
ations. Both systems use the dual-kernel
approach. However, we had already de-
veloped an almost equivalent product
based on Windows NT and commercial
applications. This product ended up
with an excessive end user price due to
the expensive hardware platform that
was necessary and the global cost of
software. Also, making some of our
proprietary hardware run under Win-
dows control was very difficult.

Because Linux is open source, we had
better control and could adapt the entire
system to our specific needs. Linux is
also efficient, robust, modular, and con-
figurable—all important characteristics
for mission-critical embedded systems.
Moreover, it’s royalty free.

Table 1 compares Windows and
Linux features for implementing voice
and data services. Although they are
basically equivalent, we found it easier

to develop Linux drivers for our pro-
prietary hardware, thanks to source
availability. The software development
environment is better for Windows,
and both systems offer good support.
But when it comes to royalties, soft-
ware licenses, and the cost of the hard-
ware resources necessary to run the
software platform, Linux clearly wins.

Two open source real-time Linux
extensions were available: Real-Time
Application Interface and RTLinux.?
For historical reasons, we chose to use
RTLinux for OXO.

Implementation

To fit with the dual-kernel ap-
proach’s rules, we divided the OXO
software into three main classes of
tasks on the basis of timing constraints:
hard real-time, soft real-time, and non-
real-time (see Figure 1).

Its hard real-time tasks are RTLinux
based, with strict, short deadlines and
mainly network or terminal signaling
protocols. Actually, these protocols—

Building Embedded Linux Systems, by Karim Yaghmour, O'Reilly, 2003, ISBN

0-596-00222-x, 391 pp., $44.95.

Linux for Embedded and Real-Time Applications, by Doug Abbott, Newnes,
2002, ISBN 0-7506-7546-2, 256 pp., $33.99.
Linux Device Drivers, 2nd ed., by Alessandro Rubini and Jonathan Corbet,

O'Reilly, 2001, ISBN 0-596-00008-1, 586 pp., www.xml.com/Idd/chapter/
book, $39.95.
Linux embarqué [French], by Pierre Ficheux, Eyrolles, 2002, ISBN 2-212-
11024-3, 326 pp., €39.
“Books on Embedded Linux,” Linux Devices.com, 2004, www.linuxdevices.
com/articles/AT2969812114.html.

20 1EEE SOFTWARE

www.computer.org/software

which are among the software’s most
delicate parts—were already isolated in
the existing system. Moreover, the sys-
tem had implemented them as finite
state machines, making the port
straightforward and avoiding the huge
debugging effort we feared.

OXO’s soft real-time high-priority
Linux processes include call control,
voice over IP, the H.323 or Session Initia-
tion Protocol, and so on. These processes
have flexible deadlines and can live with
things like delayed tone generation.

OXO’s non-real-time low-priority
processes are Linux based, with no real-
time constraints. These include mainly
Internet applications such as Internet
access, email, firewalls, and so on.

Figure 1 shows an example of a
non-real-time Linux application that
provides Internet access through ISDN.
The application asks the call control
function (soft real-time) to control the
ISDN signaling protocols (hard real-
time) in order to set up a connection
with the service provider.

oday’s communication systems re-

quire advanced services that propri-

etary platforms can’t provide with-
out considerable development effort.
Consequently, standard platforms have
become essential. However, these plat-
forms usually lack the real-time sup-
port that such embedded systems gen-
erally require.

Although it doesn’t support real-
time natively, with help from available
extensions and careful design, Linux
provides an effective way of building
such systems. The recommended read-
ing in the sidebar will give you more
detailed information. @

References

1. “Alcatel OmniPCX Office,” Alcatel, www.
alcatel.com/smb/Pages/Products/OmniPCX Office/
index.htm.

2. C. Williams, “Linux Scheduler Latency,” Red
Hat, Mar. 2002, www.linuxdevices.com/files/
article027/rh-rtpaper.pdf.

3. Real-Time Linux Foundation, 2004, www.
realtimelinuxfoundation.org.

Armand Marchesin is a software architect manager
in the Software Department of the Enterprise Solufion Division,
Private Communication Group, at Alcatel. Contact him at
Armand.Marchesin@alcatel fr.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

